Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational Complexity of Art Gallery Problems

  • Chapter
Autonomous Robot Vehicles

Abstract

We study the computational complexity of the art gallery problem originally posed by Klee, and its variations. Specifically, the problem of determining the minimum number of vertex guards that can see an n-wall simply connected art gallery is shown to be NP-hard. The proof can be modified to show that the problems of determining the minimum number of edge guards and the minimum number of point guards in a simply connected polygonal region are also NP-hard. As a byproduct, the problem of decomposing a simple polygon into a minimum number of star-shaped polygons such that their union is the original polygon is also shown to be NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Aggarwal, personal communication.

    Google Scholar 

  2. N. Ahuja, R. T. Chien, R. Yen, and N. Birdwell, “Interface detection and collision avoidance among three dimensional objects,” in Proc. 1st Nat. Conf. Artificial Intelligence, 1980, pp. 44–48.

    Google Scholar 

  3. D. Avis and G. T. Toussaint, “An efficient algorithm for decom-posing a polygon into star-shaped polygons,” Pattern Recognition, vol. 13, pp. 395–398, 1981.

    Article  MathSciNet  Google Scholar 

  4. D. Avis and G. T. Toussaint, “An optimal algorithm for determining the visibility of a polygon from an edge,” IEEE Trans. Compute vol. C-30, pp. 910–914, Dec. 1981.

    Article  MathSciNet  Google Scholar 

  5. B. M. Chazelle and D. Dobkin, “Decomposing a polygon into its convex parts,” in Proc. 11th ACM Symp. Theory Comput., 1979, pp. 38–48.

    Google Scholar 

  6. V. Chvatal, “A combinatorial theorem in plane geometry,” J. Comb. Theory, Ser. B, vol. 18, pp. 39–41, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Edelsbrunner, J. O’Rourke, and E. Welzl, “Stationing guards in rectilinear art galleries,” Comput. Vision, Graphics, Image Processing, vol. 27, pp. 167–176, 1984.

    Article  Google Scholar 

  8. H.-Y. Feng and T. Pavlidis, “Decomposition of polygons into simpler components: Feature generation for syntactic pattern recognition,” IEEE Trans. Comput., vol. C-24, pp. 636–650, June 1975.

    Article  MathSciNet  Google Scholar 

  9. S. Fisk, “A short proof of Chvatal’s watchman theorem,” J. Comb. Theory Ser. B, vol. 24, p. 374, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

    MATH  Google Scholar 

  11. R. Honsberger, Mathematical Gems II. Mathematical Assoc. of America, 1976.

    MATH  Google Scholar 

  12. J. Kahn, M. Klawe, and D. Kleitman, “Traditional galleries require fewer watchmen,” SIAM J. Alg. Disc. Meth., vol. 4, pp. 194–206, June 1983.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. O’Rourke, “The complexity of computing minimum convex covers for polygons,” in Proc. 20th Allerton Conf., 1982, pp.75–84.

    Google Scholar 

  14. J. O’Rourke, “An alternate proof of the rectilinear art gallery theorem,” J. Geometry, vol. 211, pp. 118–130,1983; also in Dep. Elec. Eng. and Comput. Sci., Johns Hopkins Univ., Baltimore, MD, Tech. Rep. 8215, Dec. 1982.

    Article  MathSciNet  Google Scholar 

  15. J. O’Rourke,“Galleries need fewer mobile guards: A variation on Chvatal’s theorem,” Geometricae Dedicata, vol. 14, pp. 273–283, 1983.

    MATH  MathSciNet  Google Scholar 

  16. J. O’Rourke and K. Supowit, “Some NP-hard polygon decomposition problems,” IEEE Trans. Inform. Theory, vol. If-29, pp. 181–190, Mar. 1983.

    Article  MathSciNet  Google Scholar 

  17. J. Sack, “An O(n log n) algorithm for decomposing simple rectilinear polygons into convex quadrilaterals,” in Proc. 20th Allerton Conf., 1982, pp. 64–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 AT&T

About this chapter

Cite this chapter

Lee, D.T., Lin, A.K. (1990). Computational Complexity of Art Gallery Problems. In: Cox, I.J., Wilfong, G.T. (eds) Autonomous Robot Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8997-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8997-2_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8999-6

  • Online ISBN: 978-1-4613-8997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics