Abstract
In this chapter, a so-called DCA method based on a DC (difference of convex functions) optimization approach for solving large-scale distance geometry problems is developed. Two main problems are considered: the exact and the general distance geometry problems. Different formulations of equivalent DC programs are introduced. Substantial subdifferential calculations permit to compute sequences of iterations in the DCA quite simply and allow exploiting sparsity in the large-scale setting. For improving the computational efficiency of the DCA schemes we investigate several techniques. A two-phase algorithm using shortest paths between all pairs of atoms to generate the complete dissimilarity matrix, a spanning trees procedure, and a smoothing technique are investigated in order to compute a good starting point (SP) for the DCAs. An important issue in the DC optimization approach is well exploited, say the nice effect of DC decompositions of the objective functions. For this purpose we propose several equivalent DC formulations based on the stability of Lagrangian duality and the regularization techniques. Finally, many numerical simulations of the molecular optimization problems with up to 12,567 variables are reported which prove the practical usefulness of the nonstandard nonsmooth reformulations, the globality of found solutions, the robustness, and the efficiency of our algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alfakih, A.Y., Khandani, A., Wolkowicz, H.: An interior-point method for the Euclidean distance matrix completion problem. Research Report CORR 97-9, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press (1953)
Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)
Le Thi H.A.: DC programming and DCA, available on the website http://lita.sciences.univ-metz.fr/~lethi/DCA.html
Demyanov, V.F., Vasilev, L.V.: Nondifferentiable optimization. Optimization Software, Inc. Publications Division, New York (1985)
De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Barra, J.R., et al. (eds.) Recent Developments in Statistics, pp. 133–145. North-Holland Publishing Company (1977)
De Leeuw, J.: Convergence of the majorization method for multidimensional scaling. Journal of Classification 5, 163–180 (1988)
Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, Euclidean distance matrix completions, and graph realization. Optim. Eng. 11(1), 45–66 (2010)
Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Optim. 22(1), 365–375 (2002)
Floudas, C., Adjiman, C.S., Dallwig, S., Neumaier, A.: A global optimization method, αBB, for general twice differentiable constrained NLPs – I: theoretical advances. Comput. Chem. Eng. 22, 11–37 (1998)
Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformation from distance matrices. J. Comput. Chem. 14, 114–120 (1993)
Havel, T.F.: An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance. Progr. Biophys. Mol. Biol. 56, 43–78 (1991)
Hendrickson, B.A.: The molecule problem: determining conformation from pairwise distances. Ph.D. thesis, Cornell University, Ithaca, New York (1991)
Hendrickson, B.A.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)
Hirriart Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)
Huang, H.X., Liang, Z.A., Pardalos, P.M.: Some properties for the Euclidean distance matrix and positive semi-Definite matrix completion problems. Department of Industrial and Systems Engineering, University Florida (2001)
Krislock, N., Wolkowicz, H.: Euclidean distance matrices and applications. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 879–914 (2012)
Laurent, M.: Cuts, matrix completions and a graph rigidity. Math. Program. 79(1-3), 255–283 (1997)
Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algorithmes et Applications. Habilitation à Diriger des Recherches, Université de Rouen, Juin (1997)
Le Thi, H.A., Le Hoai, M., Nguyen, V.V., Pham Dinh, T.: A DC Programming approach for Feature Selection in Support Vector Machines learning. Journal of Advances in Data Analysis and Classification 2(3), 259–278 (2008)
Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by d.c. algorithms. J. Global Optim. 11, 253–285 (1997)
Le Thi, H.A., Pham Dinh, T.: D.c. programming approach for large scale molecular optimization via the general distance geometry problem. In: Floudas, C.A., Pardalos, P.M. (eds.) Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches, pp. 301–339. Kluwer Academic Publishers (2000)
Le Thi, H.A., Pham Dinh, T.: Large scale molecular optimization from distance matrices by a d.c. optimization approach. SIAM J. Optim. 14(1), 77–114 (2003)
Le Thi, H.A., Pham Dinh, T.: A new algorithm for solving large scale molecular distance geometry problems. special issue of Applied Optimization, HighPerformance Algorithms and Software for Nonlinear Optimization, pp. 279–296. Kluwer Academic Publishers (2003)
Le Thi, H.A.: Solving large scale molecular distance geometry problems by a smoothing technique via the gaussian transform and d.c. programming. J. Global Optim. 27(4), 375–397 (2003)
Le Thi, H.A., Pham Dinh, T.: The DC programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)
Le Thi, H.A., Pham Dinh, T., Huynh, V.N.: Convergence analysis of DC algorithm for DC programming with subanalytic data. Research Report, National Institute for Applied Sciences (2009)
Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)
Mahey, P., Pham Dinh, T.: Partial regularization of the sum of two maximal monotone operators. Math. Model. Numer. Anal. (M 2 AN) 27, 375–395 (1993)
Mahey, P., Pham Dinh, T.: Proximal decomposition of the graph of maximal monotone operator. SIAM J. Optim. 5, 454-468 (1995)
Moré, J.J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 8, 814–836 (1997)
Moré, J.J., Wu, Z.: Issues in large-scale molecular optimization. preprint MCS-P539-1095, Argonne National Laboratory, Argonne, Illinois 60439, March 1996
Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. preprint MCS-P628-1296, Argonne National Laboratory, Argonne, Illinois 60439, December 1996
Pham Dinh, T.: Contribution à la théorie de normes et ses applications à l’analyse numérique. Thèse de Doctorat d’Etat Es Science, Université Joseph Fourier-Grenoble (1981)
Pham Dinh, T.: Convergence of subgradient method for computing the bound norm of matrices. Lin. Algebra. Appl. 62, 163–182 (1984)
Pham Dinh, T.: Algorithmes de calcul d’une forme quadratique sur la boule unité de la norme maximum. Numer. Math. 45, 377–440 (1985)
Pham Dinh, T.: Algorithms for solving a class of non convex optimization problems. Methods of subgradients. Mathematics for Optimization, Elsevier Science Publishers B.V., North-Holland (1986)
Pham Dinh, T.: Duality in d.c. (difference of convex functions) optimization. Subgradient methods. Trends in Mathematical Optimization, International Series of Numer Math., vol. 84, pp. 277–293. Birkhäuser (1988)
Pham Dinh, T., Le Thi, H.A.: Stabilité de la dualité lagrangienne en optimisation d.c. (différence de deux fonctions convexes). C.R. Acad. Paris, t.318, Série I, pp. 379–384 (1994)
Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithms and Applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday). Acta Mathematica Vietnamica 22, 289–355 (1997)
Pham Dinh, T., Le Thi, H.A.: D.c. optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)
Pham Dinh, T., Nguyen, C.N., Le Thi, H.A.: An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Global Optim. 48(4), 595–632 (2010)
Polyak, B.: Introduction to optimization. Optimization Software, Inc. Publications Division, New York (1987)
Rockafellar, R.T.: Convex Analysis. Princeton University, Princeton (1970)
Saxe, J.B.: Embeddability of weighted Graphs in k-space is strongly NP-hard. In: Proceedings of the 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)
Souza, M., Xavier, A.E., Lavor, C., Maculan, N.: Hyperbolic smoothing and penalty techniques applied to molecular structure determination. Oper. Res. Lett. 39(6), 461–465 (2011)
Varga, R.: Matrix Iterative Analysis. Prentice Hall (1962)
Zou, Z., Richard, H.B., Schnabel, R.B.: A stochastic/pertubation global optimization algorithm for distance geometry problems. J. Global Optim. 11, 91–105 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Thi, H.A.L., Dinh, T.P. (2013). DC Programming Approaches for Distance Geometry Problems. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_13
Download citation
DOI: https://doi.org/10.1007/978-1-4614-5128-0_13
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-5127-3
Online ISBN: 978-1-4614-5128-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)