Summary
We consider some problems suggested by special cases of a conjecture of Erdős and Hajnal.
Supported by OTKA grant 2570.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Bibliography
C. Berge, D. Duchet, Strongly perfect graphs, in Topics on Perfect graphs, Annals of Discrete Math. Vol 21 (1984) 57–61.
Z. Blázsik, M. Hujter, A. Pluhár, Zs. Tuza, Graphs with no induced C 4 and 2K 2, Discrete Math. 115 (1993) 51–55.
F. R. K. Chung, On the covering of graphs, Discrete Math. 30 (1980) 89–93.
P. Erdős, Graph Theory and Probability II., Canadian J. Math. 13, (1961) 346–352.
P. Erdős, Some Remarks on the Theory of Graphs, Bulletin of the American Mathematics Society, 53 (1947), 292–294.
P. Erdős, A. Gyárfás, T. Łuczak, Graphs in which each C 4 spans K 4, Discrete Math. 154 (1996) 263–268.
P. Erdős, A. Hajnal, Ramsey Type Theorems, Discrete Applied Math. 25 (1989) 37–52.
J. L. Fouquet, A decomposition for a class of \((P_{5},\overline{P_{5}})\)-free graphs, Discrete Math. 121 (1993) 75–83.
A. Gyárfás, A Ramsey type Theorem and its applications to relatives of Helly’s theorem, Periodica Math. Hung. 3 (1973) 299–304.
A. Gyárfás, Problems from the world surrounding perfect graphs, Zastowania Matematyki, Applicationes Mathematicae, XIX 3–4 (1987) 413–441.
Hirschfeld, Finite Projective Spaces of three dimensions, Clarendon Press, Oxford, 1985.
L. Lovász, Perfect Graphs, in Selected Topics in Graph Theory 2. Academic Press (1983) 55–87.
H. J. Prömel, A.Steger, Almost all Berge graphs are perfect, Combin. Probab. Comput. 1 (1992) 53–79.
D. Seinsche, On a property of the class of n-colorable graphs, Journal of Combinatorial Theory B. 16 (1974) 191–193.
J. Spencer, Ten lectures on the Probabilistic method, CBMS-NSF Conference Series, 52.
S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs, J. Combinatorial Theory B. 29 (1980) 345–346.
N. Alon, J. Pach, J. Solymosi, Ramsey-type theorems with forbidden subgraphs, Combinatorica 21 (2001) 155–170.
M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Annals of Math. 164 (2006) 51–229.
M. Chudnovsky, S. Safra, The Erdős-Hajnal conjecture for bull-free graphs, J. Combinatorial Theory B, 98 (2008) 1301–1310.
M. Chudnovsky, P. Seymour, Excluding paths and antipaths, submitted manuscript.
M. Chudnovsky, Y. Zwols, Large cliques or stable sets in graphs with no four-edge path and no five-edge path in the complement, Journal of Graph Theory, DOI 10.1002/jgt.20626
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Gyárfás, A. (2013). Reflections on a Problem of Erdős and Hajnal. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős II. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7254-4_11
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7254-4_11
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-7253-7
Online ISBN: 978-1-4614-7254-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)