Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Control of Aquatic and Terrestrial Gaits in Salamander

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Swimming and walking modes of the salamander

Definition

Salamanders are amphibian animals that are capable of several aquatic and terrestrial gaits. These gaits are in large part controlled by central pattern generator (CPG) networks in the spinal cord. These networks can be modeled at several levels of abstraction from detailed models based on Hodgkin-Huxley type of neurons to abstract systems of coupled oscillators. The models have been instrumental in testing some hypotheses concerning gait generation and gait transition in the salamander. One of the main hypotheses is that the salamander CPG is constructed out of two main subnetworks: a lamprey-like swimming CPG for the axial musculature and slower CPGs for the limbs. Some of the models have been tested on a salamander-like robot and demonstrated their ability to make transitions between swimming and walking gaits by varying the level of tonic input applied to the CPGs.

Detailed Description

Locomotion in Salamanders

Salaman...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bicanski A, Ryczko D, Knuesel J, Harischandra N, Charrier V, Ekeberg Ö, Cabelguen JM, Ijspeert A (2013a) Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics. Biol Cybern 107(5):545–564

    Article  PubMed  Google Scholar 

  • Bicanski A, Ryczko D, Cabelguen JM, Ijspeert A (2013b) From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander. Biol Cybern 107(5):565–587

    Article  PubMed  Google Scholar 

  • Cabelguen J-M, Bourcier-Lucas C, Dubuc R (2003) Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J Neurosci 23:2434–2439

    PubMed  CAS  Google Scholar 

  • Cheng J, Stein RB, Jovanovic K, Yoshida K, Bennett DJ, Han Y (1998) Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord. J Neurosci 18:4295–4304

    PubMed  CAS  Google Scholar 

  • Cheng J, Jovanovic K, Aoyagi Y, Bennett DJ, Han Y, Stein RB (2002) Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord. Exp Brain Res 145:190–198

    Article  PubMed  CAS  Google Scholar 

  • Chevallier S, Ijspeert AJ, Ryczko D, Nagy F, Cabelguen JM (2008) Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling. Brain Res Rev 57:147–161

    Article  PubMed  Google Scholar 

  • Cohen AH (1988) Evolution of the vertebrate central pattern generator for locomotion. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley-Interscience, New York

    Google Scholar 

  • Delvolvé I, Bem T, Cabelguen JM (1997) Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl. J Neurophysiol 78:638–650

    PubMed  Google Scholar 

  • Dubuc R (2009) Locomotor regions in the midbrain (MLR) and diencephalon (DLR). In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin

    Google Scholar 

  • Edwards JL (1977) The evolution of terrestrial locomotion. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum, New York, pp 553–576

    Chapter  Google Scholar 

  • Frolich L, Biewener A (1992) Kinematic and electromyographic analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander Ambystoma tigrinum. J Exp Biol 162:107–130

    Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology, the nervous system, vol 2, Motor control, section 1. American Physiology Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84:331–348

    Article  PubMed  CAS  Google Scholar 

  • Ijspeert AJ, Crespi A, Cabelguen J-M (2005) Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Neuroinformatics 3:171–195

    Article  PubMed  Google Scholar 

  • Ijspeert AJ, Crespi A, Ryczko D, Cabelguen J-M (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315:1416–1420

    Article  PubMed  CAS  Google Scholar 

  • Karakasiliotis K, Schilling N, Cabelguen J-M, Ijspeert AJ (2013) Where are we in understanding salamander locomotion: biological and robotic perspectives on kinematics. Biol Cybern 107(5):529–544

    Article  PubMed  Google Scholar 

  • Knüsel J, Bicanski A, Ryczko D, Cabelguen JM, Ijspeert AJ (2013) A salamander’s flexible spinal network for locomotion, modeled at two levels of abstraction. Integr Comp Biol 53(2):269–282

    Article  PubMed  Google Scholar 

  • Kopell N (1995) Chains of coupled oscillators. In: Arbib MA (ed) The handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp 178–183

    Google Scholar 

  • Ryczko D, Lamarque S, Didier H, Cabelguen JM (2009) Dynamics of the axial locomotor network in the isolated spinal cord of the salamander. Soc Neurosci. Program 565.8, Abstract EE6

    Google Scholar 

  • Ryczko D, Charrier V, Ijspeert A, Cabelguen JM (2010a) Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms. J Neurophysiol 104:2677–2692

    Article  PubMed  Google Scholar 

  • Ryczko D, Dubuc R, Cabelguen J-M (2010b) Rhythmogenesis in axial locomotor networks: an interspecies comparison. Prog Brain Res 187:189–211

    Article  PubMed  Google Scholar 

  • Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666

    PubMed  CAS  Google Scholar 

  • Strogatz S (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D 143(1–4):1–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auke Jan Ijspeert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ijspeert, A.J., Cabelguen, JM. (2014). Control of Aquatic and Terrestrial Gaits in Salamander. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_44-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_44-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Control of Aquatic and Terrestrial Gaits in Salamander
    Published:
    01 August 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_44-2

  2. Original

    Control of Aquatic and Terrestrial Gaits in the Salamander
    Published:
    13 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_44-1