Abstract
Visualization tools can support and enhance the performance of complex cognitive activities such as sense making, problem solving, and analytical reasoning. To do so effectively, however, a human-centered approach to their design and evaluation is required. One way to make visualization tools human-centered is to make them interactive. Although interaction allows a user to adjust the features of the tool to suit his or her cognitive and contextual needs, it is the quality of interaction that largely determines how well complex cognitive activities are supported. In this chapter, interactivity is conceptualized as the quality of interaction. As interactivity is a broad and complex construct, we categorize it into two levels: micro and macro. Interactivity at the micro level emerges from the structural elements of individual interactions. Interactivity at the macro level emerges from the combination, sequencing, and aggregate properties and relationships of interactions as a user performs an activity. Twelve micro-level interactivity elements and five macro-level interactivity factors are identified and characterized. The framework presented in this chapter can provide some structure and facilitate a systematic approach to design and evaluation of interactivity in human-centered visualization tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aigner, W.: Understanding the role and value of interaction: First steps. In: S. Miksch, G. Santucci (eds.) International Workshop on Visual Analytics (2011)
Albers, M.: Design for effective support of user intentions in information-rich interactions. Journal of Technical Writing and Communication 39(2), 177–194 (2009)
Albers, M.: Human-information interactions with complex software. Design, User Experience, and Usability. pp. 245–254 (2011)
Alessi, S.M., Trollip, S.R.: Multimedia for Learning: Methods and Development. Allyn and Bacon (2001)
Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. IEEE Symposium on Information Visualization, 2005. INFOVIS 2005. pp. 111–117 (2004)
Arias-Hernandez, R., Green, T., Fisher, B.: From cognitive amplifiers to cognitive prostheses: Understandings of the material basis of cognition in visual analytics. Interdisciplinary Science Reviews 37(1), 4–18 (2012)
Brown, J., Collins, A., Duguid, P.: Situated cognition and the culture of learning. Educational researcher 18(1), 32 (1989)
Bucy, E.: Interactivity in society: Locating an elusive concept. The Information Society 20(5), 373–383 (2004)
Clark, A.: Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing. Explorations in cognitive science. MIT Press (1991)
Clark, A.: Time and mind. The Journal of Philosophy 95(7), 354 (1998)
Clark, A.: Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Philosophy of Mind Series. Oxford University Press (2008)
Clark, A., Chalmers, D.: The extended mind. Analysis 58(1), 7–19 (1998)
Crystal, A., Ellington, B.: Task analysis and human-computer interaction: Approaches, techniques, and levels of analysis. In: Tenth Americas Conference on Information Systems, pp. 1–9. New York, New York, USA (2004)
Dourish, P.: Where The Action Is: The Foundations Of Embodied Interaction. Bradford Books. MIT Press (2004)
Downes, E.J., McMillan, S.J.: Defining interactivity: A qualitative identification of key dimensions. New Media & Society 2(2), 157–179 (2000)
Fabrikant, S.I.: Persistent problem in geographic visualization: Evidence of geovis(ual analytics) utility and usefulness. In: ICA Geovis Commission ICC2011, vol. 44, pp. 2009–2011. Paris, France (2011)
Fidel, R.: Human Information Interaction: An Ecological Approach to Information Behavior. MIT Press (2012)
Funke, J.: Complex problem solving: A case for complex cognition? Cognitive Processing 11(2), 133–42 (2010)
Gotz, D., Zhou, M.: Characterizing users visual analytic activity for insight provenance. IEEE Symposium on VAST pp. 123–130 (2008)
Hang, H., Auty, S.: Children playing branded video games: The impact of interactivity on product placement effectiveness. Journal of Consumer Psychology 21(1), 65–72 (2011)
Hannon, J., Atkins, P.: All about interactivity. Tech. rep., Victoria, Australia (2002)
Hegarty, M.: The cognitive science of visual-spatial displays: Implications for design. Topics in Cognitive Science 3(3), 446–474 (2011)
Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction (TOCHI) 7(2), 174–196 (2000)
Hutchins, E.: Cognition in the Wild. Bradford Books. MIT Press (1995)
Hutchins, E., Klausen, T.: Distributed cognition in an airline cockpit. Cognition and Communication at Work pp. 15–34 (1996)
Jensen, J.: Interactivity: Tracking a new concept in media and communication studies. Nordicom Review 19(1), 185–204 (1998)
Johnson, C., Moorhead, R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.: NIH-NSF Visualization Research Challenges. Tech. rep., Los Alamitos, CA (2006)
Kaptelinin, V., Nardi, B.: Activity Theory in HCI. Morgan & Claypool Publishers (2012)
Keim, D., Kohlhammer, J., Ellis, G.: Mastering The Information Age-Solving Problems with Visual Analytics (2010)
Keim, D., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope and challenges. In: Visual Data Mining: Theory, Techniques and Tools for Visual Analytics, lncs edn. Springer (2008)
Kiousis, S.: Interactivity: a concept explication. New Media & Society 4(3), 355–383 (2002)
Kirsh, D.: Interactivity and multimedia interfaces. Instructional Science 25(2), 79–96 (1997)
Kirsh, D.: Metacognition, distributed cognition and visual design. Cognition, Education, and Communication Technology pp. 1–22 (2005)
Kirsh, D.: Problem solving and situated cognition. The Cambridge handbook of situated cognition pp. 264–306 (2009)
Kirsh, D., Maglio, P.: On distinguishing epistemic from pragmatic action. Cognitive Science: A Multidisciplinary Journal 18(4), 513–549 (1994)
Knauff, M., Wolf, A.G.: Complex cognition: The science of human reasoning, problem-solving, and decision-making. Cognitive Processing 11(2), 99–102 (2010)
Laine, P., Phil, L.: Explicitness and interactivity. Proceedings of the 1st international symposium on Information and communication technologies p. 426 (2003)
Liang, H.N., Parsons, P., Wu, H.C., Sedig, K.: An exploratory study of interactivity in visualization tools: Flow of interaction. Journal of Interactive Learning Research 21(1), 5–45 (2010)
Liang, H.N., Sedig, K.: Can interactive visualization tools engage and support pre-university students in exploring non-trivial mathematical concepts? Computers & Education 54(4), 972–991 (2010)
Liang, H.N., Sedig, K.: Role of interaction in enhancing the epistemic utility of 3D mathematical visualizations. International Journal of Computers for Mathematical Learning 15(3), 191–224 (2010)
Liu, Y., Shrum, L.J.: A dual-process model of interactivity effects. Journal of Advertising 38(2), 53–68 (2009)
Liu, Z., Nersessian, N., Stasko, J.: Distributed cognition as a theoretical framework for information visualization. IEEE transactions on visualization and computer graphics 14(6), 1173–80 (2008)
Liu, Z., Stasko, J.: Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE transactions on visualization and computer graphics 16(6), 999–1008 (2010)
Mann, S.: Conversation as a basis for interactivity. In: Proceedings of the 15th Annual Conference of the National Advisory Committee on Computing Qualifications, pp. 281–288. Hamilton, NZ (2002)
Marchionini, G.: Information Concepts: From Books to Cyberspace Identities (2010)
McClelland, J.L.: Emergence in cognitive science. Topics in Cognitive Science 2(4), 751–770 (2010)
Mirel, B.: Interaction Design for Complex Problem Solving: Developing Useful and Usable Software. The Morgan Kaufmann Series in Interactive Technologies. Morgan Kaufmann (2004)
Nardi, B.: Studying context: A comparison of activity theory, situated action models, and distributed cognition. Context and consciousness: Activity theory and human-computer interaction pp. 69–102 (1996)
Parsons, P., Sedig, K.: Common visualizations: Their cognitive utility (this volume)
Parsons, P., Sedig, K.: Distribution of information processing while performing complex cognitive activities with visualization tools (this volume)
Parsons, P., Sedig, K.: Properties of visual representations: Improving the quality of human-information interaction in complex cognitive activities. Journal of the American Society for Information Science and Technology (under review)
Pike, W.a., Stasko, J., Chang, R., OConnell, T.A.: The science of interaction. Information Visualization 8(4), 263–274 (2009)
Pohl, M., Wiltner, S., Miksch, S., Aigner, W., Rind, A.: Analysing interactivity in information visualisation. KI - Künstliche Intelligenz 26(2), 151–159 (2012)
Purchase, H., Andrienko, N., Jankun-Kelly, T., Ward, M.: Theoretical foundations of information visualization. In: A. Kerren, J.T. Stasko, J.D. Fekete, C. North (eds.) Information Visualization: Human-Centered Issues and Perspectives, Lecture Notes in Computer Science, vol. 4950, pp. 46–64. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)
Scaife, M., Rogers, Y.: External cognition: how do graphical representations work? International Journal of Human-Computer Studies 45(2), 185–213 (1996)
Scholtz, J.: Beyond usability: Evaluation aspects of visual analytic environments. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 145–150 (2006)
Sedig, K.: Need for a prescriptive taxonomy of interaction for mathematical cognitive tools. Lecture Notes in Computer Science pp. 1030–1037 (2004)
Sedig, K.: From play to thoughtful learning: A design strategy to engage children with mathematical representations. Journal of Computers in Mathematics and Science Teaching 27(1), 65–101 (2008)
Sedig, K., Klawe, M., Westrom, M.: Role of interface manipulation style and scaffolding on cognition and concept learning in learnware. ACM Transactions on Computer-Human Interaction (TOCHI) 8(1), 34–59 (2001)
Sedig, K., Liang, H.N.: Interactivity of visual mathematical representations: Factors affecting learning and cognitive processes. Journal of Interactive Learning Research 17(2), 179 (2006)
Sedig, K., Liang, H.N.: On the design of interactive visual representations: Fitness of interaction. In: C. Seale, J. Montgomerie (eds.) World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 999–1006. AACE (2007)
Sedig, K., Liang, H.N.: Learner-information interaction: A macro-level framework characterizing visual cognitive tools. Journal of Interactive Learning Research 19(1), 147–173 (2008)
Sedig, K., Parsons, P.: Interaction design for complex cognitive activities with visual representations: A pattern-based approach. AIS Transactions on Human-Computer Interaction (2013, to appear)
Sedig, K., Rowhani, S., Liang, H.N.: Designing interfaces that support formation of cognitive maps of transitional processes: an empirical study. Interacting with Computers 17(4), 419–452 (2005)
Sedig, K., Rowhani, S., Morey, J., Liang, H.N.: Application of information visualization techniques to the design of a mathematical mindtool: A usability study. Information Visualization 2(3), 142–159 (2003)
Sedig, K., Sumner, M.: Characterizing interaction with visual mathematical representations. International Journal of Computers for Mathematical Learning 11(1), 1–55 (2006)
Shneiderman, B.: The eyes have it: A task by data type taxonomy. Tech. rep., University of Maryland, College Park (1996)
Thomas, J., Cook, K.: Illuminating the path: The research and development agenda for visual analytics. IEEE Press (2005)
Ware, C.: Visual Thinking for Design. Morgan Kaufmann Series in Interactive Technologies. Morgan Kaufmann (2008)
van Wijk, J.J.: Views on visualization. IEEE transactions on visualization and computer graphics 12(4), 421–32 (2006)
Yi, J., Kang, Y., Stasko, J., Jacko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics 13(6), 1224–1231 (2007)
Yoo, W.S., Lee, Y., Park, J.: The role of interactivity in e-tailing: Creating value and increasing satisfaction. Journal of Retailing and Consumer Services 17(2), 89–96 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Sedig, K., Parsons, P., Dittmer, M., Haworth, R. (2014). Human-Centered Interactivity of Visualization Tools: Micro- and Macro-level Considerations. In: Huang, W. (eds) Handbook of Human Centric Visualization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7485-2_29
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7485-2_29
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-7484-5
Online ISBN: 978-1-4614-7485-2
eBook Packages: Computer ScienceComputer Science (R0)