Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm

  • Chapter
High Performance Optimization

Part of the book series: Applied Optimization ((APOP,volume 33))

Abstract

The purpose of this work is to present the MOSEK optimizer intended for solution of large-scale sparse linear programs. The optimizer is based on the homogeneous interior-point algorithm which in contrast to the primal-dual algorithm detects a possible primal or dual infeasibility reliably. It employs advanced (parallelized) linear algebra, it handles dense columns in the constraint matrix efficiently, and it has a basis identification procedure.

This paper discusses in details the algorithm and linear algebra em­ployed by the MOSEK interior point optimizer. In particular the ho­mogeneous algorithm is emphasized. Furthermore, extensive computa­tional results are reported. These results include comparative results for the XPRESS simplex and the MOSEK interior point optimizer. Fi­nally, computational results are presented to demonstrate the possible speed-up, when using a parallelized version of the MOSEK interior point optimizer on a multiprocessor Silicon Graphics computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga. Data structures and programming techniques for the implementation of Karmarkar’s algorithm. ORSA J. on Comput. , 1(2):84–106, 1989.

    Article  MATH  Google Scholar 

  2. P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM J. Mat. Anal. Appl., 17(4):886–905, October 1996.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. D. Andersen. Finding all linearly dependent rows in large-scale linear programming. Optimization Methods and Software, 6:219–227, 1995.

    Article  Google Scholar 

  4. E. D. Andersen. On exploiting problem structure in the basis identification procedure for linear programming. Technical Report 6, Department of Management, Odense University, Denmark, July 1996.

    Google Scholar 

  5. E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming, 71(2):221–245, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. D. Andersen and K. D. Andersen. A parallel interior-point based linear programming solver for shared-memory multiprocessor computers: A case study based on the XPRESS LP solver. Technical report, CORE, UCL, Belgium, 1997.

    Google Scholar 

  7. E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor, Interior-point methods of mathematical programming, pages 189–252. Kluwer Academic Publishers, 1996.

    Google Scholar 

  8. E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management Sci., 42(12):1719–1731, December 1996.

    Article  MATH  Google Scholar 

  9. K. D. Andersen. A Modified Schur Complement Method for Handling Dense Columns in Interior-Point Methods for Linear Programming. ACM Trans. Math. Software, 22(3):348–356, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. C. Ashcraft and R. G. Grimes. The influence of relaxed supernode partitions on the multifrontal method. ACM Trans. Math. Software, 4(15):291–309, 1989.

    Article  Google Scholar 

  11. C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon. Progress in sparse matrix methods for large scale linear systems on vector supercomputers. The Internat. J. of Supercomputer Appl., 1(4): 10–30, 1987.

    Article  Google Scholar 

  12. J. R. Birge and D. F. Holmes. Efficient solution of two-stage stochastic linear programs using interior point methods. Computational Optimization and Applications, 1:245–276, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. E. Bixby. Progress in linear programming. ORSA J. on Comput., 6(1):15–22, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. W. Chinneck. Computer codes for the analysis of infeasible linear programs. J. Oper. Res. Soc., 67:61–72, 1996.

    Google Scholar 

  15. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Oxford University Press, New York, 1989.

    MATH  Google Scholar 

  16. J. J. H. Forrest and J. A. Tomlin. Vector processing in simplex and interior methods for linear programming. Annals of Operations Research, 22:71–100, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. George and J. W. -H. Liu. Computing Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

    Google Scholar 

  18. A. George and J. W. -H. Liu. The evolution of the minimum degree ordering algorithm. SIAM Rev., 31:1–19, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  19. G.H. Golub and C.F. Van Loan. Matrix Computations. The John Hopkins University Press, Baltimore and London, 2 edition, 1989.

    MATH  Google Scholar 

  20. J. Gondzio. Multiple centrality corrections in a primal-dual method for linear programming. Computational Optimization and Applications, 6:137–156, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Gondzio and T. Terlaky. A computational view of interior point methods for linear programming. In J. Beasley, editor, Advances in linear and integer programming. Oxford University Press, Oxford, England, 1995.

    Google Scholar 

  22. H. J. Greenberg. The use of the optimal partition in a linear programming solution for postoptimal analysis. Oper. Res. Lett., 15(4):179–186, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Güler and Y. Ye. Convergence behaviour of interior-point algorithms. Math. Programming, 60(2):215–228, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Gupta. Graph partitioning based sparse matrix orderings for interior-point algorithms. Technical Report RC20467(90480), IBM Research Division, T.J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, May 1996.

    Google Scholar 

  25. B. Hendrickson and E. Rothberg. Sparse matrix ordering methods for interior point linear programming. Technical report, Silicon Graphics, Inc., January 1996.

    Google Scholar 

  26. H. -W. Jung, R. E. Marsten, and M. J. Saltzman. Numerical factorization methods for interior point algorithms. ORSA J. on Comput., 6(1):94–105, 1994.

    Article  MATH  Google Scholar 

  27. N. Karmarkar. A polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Karypis, A. Gupta, and V. Kumar. A parallel formulation of interior point algorithms. Technical Report 94–20, Department of computer science, University of Minnesota, 1994.

    Google Scholar 

  29. M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear programming. Math. Programming, 61:263–280, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear proramming. In N. Megiddo, editor, Progress in Mathematical Programming: Interior-Point Algorithms and Related Methods, pages 29–47. Springer Verlag, Berlin, 1989.

    Google Scholar 

  31. J. W.-H. Liu. A note on sparse factorization in a paging environment. SIAM J. Sci. Statist. Comput., 8(6): 1085–1088, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. J. Lustig. Feasibility issues in primal-dual interior-point methods for linear programming. Math. Programming, 49:145–162, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  33. I. J. Lustig, R. E. Marsten, and D. F. Shanno. The interaction of algorithms and architectures for interior point methods. In P. M. Pardalos, editor, Advances in optimization and parallel computing, pages 190–205. Elsevier Sciences Publishers B.V., 1992.

    Google Scholar 

  34. I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear programming: Computational state of the art. ORSA J. on Comput, 6(1):1–15, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. J. Lustig and E. Rothberg. Gigaflops in linear programming. Oper. Res. Lett., 18(4):157–165, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J. on Optim., 2(4):575–601, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Rothberg. Ordering sparse matrices using approximate minimum local fill. Technical report, Silicon Graphics, Inc. Mountain View, CA 94043, April 1996.

    Google Scholar 

  38. E. Rothberg and A. Gupta. Efficient Sparse Matrix Factorization on High-Performance Workstations-Exploiting the Memory Hierarchy. ACM Trans. Math. Software, 17(3):313–334, 1991.

    Article  MATH  Google Scholar 

  39. S. Wright. Modified Cholesky factorizations in interior-point algorithms for linear programming. Technical Report ANL/MCS-P600–0596, Mathematics and Computer Science division, Argonne National Laboratory, Argonne, IL 60439, USA, 1996.

    Google Scholar 

  40. S. J. Wright. Primal-dual interior-point methods. SIAM, Philadelphia, 1997.

    Book  MATH  Google Scholar 

  41. X. Xu, P. -F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming algorithm and its implementation. Annals of Operations Research, 62:151–171, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Ye. Interior point algorithms: theory and analysis. John Wiley and Sons, New York, 1997.

    Book  MATH  Google Scholar 

  43. Y. Ye, M. J. Todd, and S. Mizuno. An O \( O\left( {\sqrt n L} \right) \) — iteration homogeneous and self-dual linear programming algorithm. Math. Oper. Res., 19:53–67, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andersen, E.D., Andersen, K.D. (2000). The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds) High Performance Optimization. Applied Optimization, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3216-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3216-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4819-9

  • Online ISBN: 978-1-4757-3216-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics