Abstract
The purpose of this work is to present the MOSEK optimizer intended for solution of large-scale sparse linear programs. The optimizer is based on the homogeneous interior-point algorithm which in contrast to the primal-dual algorithm detects a possible primal or dual infeasibility reliably. It employs advanced (parallelized) linear algebra, it handles dense columns in the constraint matrix efficiently, and it has a basis identification procedure.
This paper discusses in details the algorithm and linear algebra employed by the MOSEK interior point optimizer. In particular the homogeneous algorithm is emphasized. Furthermore, extensive computational results are reported. These results include comparative results for the XPRESS simplex and the MOSEK interior point optimizer. Finally, computational results are presented to demonstrate the possible speed-up, when using a parallelized version of the MOSEK interior point optimizer on a multiprocessor Silicon Graphics computer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga. Data structures and programming techniques for the implementation of Karmarkar’s algorithm. ORSA J. on Comput. , 1(2):84–106, 1989.
P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM J. Mat. Anal. Appl., 17(4):886–905, October 1996.
E. D. Andersen. Finding all linearly dependent rows in large-scale linear programming. Optimization Methods and Software, 6:219–227, 1995.
E. D. Andersen. On exploiting problem structure in the basis identification procedure for linear programming. Technical Report 6, Department of Management, Odense University, Denmark, July 1996.
E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming, 71(2):221–245, 1995.
E. D. Andersen and K. D. Andersen. A parallel interior-point based linear programming solver for shared-memory multiprocessor computers: A case study based on the XPRESS LP solver. Technical report, CORE, UCL, Belgium, 1997.
E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor, Interior-point methods of mathematical programming, pages 189–252. Kluwer Academic Publishers, 1996.
E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management Sci., 42(12):1719–1731, December 1996.
K. D. Andersen. A Modified Schur Complement Method for Handling Dense Columns in Interior-Point Methods for Linear Programming. ACM Trans. Math. Software, 22(3):348–356, 1996.
C. C. Ashcraft and R. G. Grimes. The influence of relaxed supernode partitions on the multifrontal method. ACM Trans. Math. Software, 4(15):291–309, 1989.
C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon. Progress in sparse matrix methods for large scale linear systems on vector supercomputers. The Internat. J. of Supercomputer Appl., 1(4): 10–30, 1987.
J. R. Birge and D. F. Holmes. Efficient solution of two-stage stochastic linear programs using interior point methods. Computational Optimization and Applications, 1:245–276, 1992.
R. E. Bixby. Progress in linear programming. ORSA J. on Comput., 6(1):15–22, 1994.
J. W. Chinneck. Computer codes for the analysis of infeasible linear programs. J. Oper. Res. Soc., 67:61–72, 1996.
I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Oxford University Press, New York, 1989.
J. J. H. Forrest and J. A. Tomlin. Vector processing in simplex and interior methods for linear programming. Annals of Operations Research, 22:71–100, 1990.
A. George and J. W. -H. Liu. Computing Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.
A. George and J. W. -H. Liu. The evolution of the minimum degree ordering algorithm. SIAM Rev., 31:1–19, 1989.
G.H. Golub and C.F. Van Loan. Matrix Computations. The John Hopkins University Press, Baltimore and London, 2 edition, 1989.
J. Gondzio. Multiple centrality corrections in a primal-dual method for linear programming. Computational Optimization and Applications, 6:137–156, 1996.
J. Gondzio and T. Terlaky. A computational view of interior point methods for linear programming. In J. Beasley, editor, Advances in linear and integer programming. Oxford University Press, Oxford, England, 1995.
H. J. Greenberg. The use of the optimal partition in a linear programming solution for postoptimal analysis. Oper. Res. Lett., 15(4):179–186, 1994.
O. Güler and Y. Ye. Convergence behaviour of interior-point algorithms. Math. Programming, 60(2):215–228, 1993.
A. Gupta. Graph partitioning based sparse matrix orderings for interior-point algorithms. Technical Report RC20467(90480), IBM Research Division, T.J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, May 1996.
B. Hendrickson and E. Rothberg. Sparse matrix ordering methods for interior point linear programming. Technical report, Silicon Graphics, Inc., January 1996.
H. -W. Jung, R. E. Marsten, and M. J. Saltzman. Numerical factorization methods for interior point algorithms. ORSA J. on Comput., 6(1):94–105, 1994.
N. Karmarkar. A polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984.
G. Karypis, A. Gupta, and V. Kumar. A parallel formulation of interior point algorithms. Technical Report 94–20, Department of computer science, University of Minnesota, 1994.
M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear programming. Math. Programming, 61:263–280, 1993.
M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear proramming. In N. Megiddo, editor, Progress in Mathematical Programming: Interior-Point Algorithms and Related Methods, pages 29–47. Springer Verlag, Berlin, 1989.
J. W.-H. Liu. A note on sparse factorization in a paging environment. SIAM J. Sci. Statist. Comput., 8(6): 1085–1088, 1987.
I. J. Lustig. Feasibility issues in primal-dual interior-point methods for linear programming. Math. Programming, 49:145–162, 1990.
I. J. Lustig, R. E. Marsten, and D. F. Shanno. The interaction of algorithms and architectures for interior point methods. In P. M. Pardalos, editor, Advances in optimization and parallel computing, pages 190–205. Elsevier Sciences Publishers B.V., 1992.
I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear programming: Computational state of the art. ORSA J. on Comput, 6(1):1–15, 1994.
I. J. Lustig and E. Rothberg. Gigaflops in linear programming. Oper. Res. Lett., 18(4):157–165, 1996.
S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J. on Optim., 2(4):575–601, 1992.
E. Rothberg. Ordering sparse matrices using approximate minimum local fill. Technical report, Silicon Graphics, Inc. Mountain View, CA 94043, April 1996.
E. Rothberg and A. Gupta. Efficient Sparse Matrix Factorization on High-Performance Workstations-Exploiting the Memory Hierarchy. ACM Trans. Math. Software, 17(3):313–334, 1991.
S. Wright. Modified Cholesky factorizations in interior-point algorithms for linear programming. Technical Report ANL/MCS-P600–0596, Mathematics and Computer Science division, Argonne National Laboratory, Argonne, IL 60439, USA, 1996.
S. J. Wright. Primal-dual interior-point methods. SIAM, Philadelphia, 1997.
X. Xu, P. -F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming algorithm and its implementation. Annals of Operations Research, 62:151–171, 1996.
Y. Ye. Interior point algorithms: theory and analysis. John Wiley and Sons, New York, 1997.
Y. Ye, M. J. Todd, and S. Mizuno. An O \( O\left( {\sqrt n L} \right) \) — iteration homogeneous and self-dual linear programming algorithm. Math. Oper. Res., 19:53–67, 1994.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Andersen, E.D., Andersen, K.D. (2000). The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds) High Performance Optimization. Applied Optimization, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3216-0_8
Download citation
DOI: https://doi.org/10.1007/978-1-4757-3216-0_8
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4419-4819-9
Online ISBN: 978-1-4757-3216-0
eBook Packages: Springer Book Archive