Abstract
The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the “highest quality” events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J.M. Albert, Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave. J. Geophys. Res. 105(A9), 21 (2000). 191
W.I. Axford, Flow of mass and energy in the Solar system, physics of solar planetary environments, in Proceeding of the International Symposium on Solar-Terrestrial Physics, vol. 1 June 7–18 American Geophysical Union (1976), pp. 270–283
J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19, 821 (1992)
J.B. Blake, S.S. Imamoto, The proton switches. J. Spacecr. Rockets 29, 595 (1992)
J.B. Blake, M.D. Looper, D.N. Baker, R. Nakamura, B. Klecker, D. Hovestadt, New high temporal and spatial resolution measurements by SAMPEX of the precipitation of relativistic electrons. Adv. Space Res. 18(8), 171–186 (1996)
J.B. Blake et al., The ECT instrument on the Van Allen probes (this issue)
J.W. Bonnell et al., The electric field instrument for THEMIS. Space Sci. Rev. 114, 303–341 (2008). doi:10.1007/s11214-008-9469-2
D.H. Brautigam, G.P. Ginet, J.M. Albert, J.R. Wygant, D.E. Rowland, A. Ling, J. Bass, CRRES electric field power spectra and radial diffusion coefficients. J. Geophys. Res. 110, A02214 (2005). doi:10.1029/2004JA010612
C. Cattell et al., Polar observations of solitary waves at low and high altitudes and comparison to theory. Adv. Space Res. 28, 1631 (2001)
C. Cattell et al., Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35, L01105 (2008). doi:10.1029/2007GL032009
C.M. Cully, J.W. Bonnell, R.E. Ergun, THEMIS observations of large amplitude whistler mode waves in the inner magnetosphere. J. of Geophys. Res. 35, L17S16 (2008). doi:10.1029/2008GL033643
L. Dai et al., Observations of surface waves in jets from magnetotail reconnection. J. Geophys. Res. 116, A12227 (2011). doi:10.1029/2011JA017004
J. Dombeck et al., Observed trends in auroral zone ion mode solitary structure characteristics using data from polar. J. Geophys. Res. 106, 19013 (2001)
R.E. Ergun et al., The FAST satellite field instrument. Space Sci. Rev. 98, 67–91 (2001)
G. Gustafsson et al., The electric field and wave experiment for the CLUSTER mission. Space Sci. Rev. 79, 137 (1997)
P. Harvey, F.S. Mozer, D. Pankow, J. Wygant, N.C. Maynard, H. Singer, W. Sullivan, P.B. Anderson, A. Pedersen, C.-G. Falthammar, P. Tanskannen, in The Electric Field Instrument on the Polar Satellite in the Global Geospace Mission, vol. 71, ed. by C.T. Russell (Kluwer Academic, Dordrecht, 1995). Reprinted from Space Sciences Rev., 71, N1-4, 1995
R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25(15), 3011–3014 (1998)
M.K. Hudson, A.D. Kotelnikov, X. Li, I. Roth, M. Temerin, J. Wygant, Simulation of proton radiation belt formation during the March 24, 1991 SSC. Geophys. Res. Lett. 22, 291 (1995)
M.K. Hudson, S.R. Elkington, J.G. Lyon, V.A. Marchenko, I. Roth, M. Temerin, J.B. Blake, M.S. Gussenhoven, J.R. Wygant, Simulations of radiation belt formation during storm sudden commencement. J. Geophys. Res. 102, 14087 (1997)
M.K. Hudson, S.R. Elkington, J.G. Lyon, M.J. Wiltberger, in Radiation Belt Electron Acceleration by ULF Wave Drift Resonance: Simulation of 1997 and 1998 Storms, ed. by G. Siscoe, P. Song, H. Singer. AGU Monograph, Space Weather (AGU, Washington, 2001), p. 289
M.K. Hudson, R.E. Denton, M.R. Lessard, E.G. Miftakhova, R.E. Anderson, A study of Pc5 ULF oscillations. Ann. Geophys. 22, 289 (2004)
J.C. Ingraham, T.E. Cayton, R.D. Belian, R.A. Christensen, R.H.W. Friedel, M.M. Meier, G.D. Reeves, M. Tuszewski, Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991. J. Geophys. Res. 106(A11), 25759–25776 (2001). doi:10.1029/2000JA000458
P.J. Kellogg et al., Electron trapping and charge transport by large amplitude whistlers. Geophys. Res. Lett. 37, L20106 (2010). doi:10.1029/2010GL044845
K. Kersten et al., Observation of relativistic electron microbursts in conjunction with enhanced radiation belt whistler mode waves. Geophys. Res. Lett. 38, L08107 (2011). doi:10.1029/2001GL046810
K. Kirby et al., The radiation belt storm probes-observatory and environment (this issue)
C. Kletzing et al., The electric and magnetic field instrument suite and integrated science and integrated science (EMFISIS) on RBSP. Space Sci. Rev. (2013). doi:10.1007/s11214-013-9993-6 (this issue)
X. Li, I. Roth, M. Temerin, J.R. Wygant, M.K. Hudson, J.B. Blake, Simulation of prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 20, 2423 (1993)
X. Li, D.N. Baker, M. Temerin, G. Reeves, R. Belian, Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms. Geophys. Res. Lett. 25, 3763 (1998)
K.R. Lorentzen, J.E. Mazur, M.D. Looper, J.F. Fennell, J.B. Blake, Multisatellite observations of MeV ion injections during storms. J. Geophys. Res. 107, 1231 (2002)
G. Marklund, Viking investigations of auroral electrodynamical processes. J. Geophys. Res. 98, 1691 (1993)
G. Marklund et al., The Swedish small satellite program for space plasma investigations. Space Sci. Rev. 111(3–4), 377–413 (2004). doi:10.1023/B:SPAC.0000032690.82775.dB
R.M. Millan, R.P. Lin, D.M. Smith, K.R. Lorentzen, M.P. McCarthy, X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys. Res. Lett. 29, 2194 (2002)
R.M. Millan (this issue)
F. Mozer, Analysis of techniques for measuring DC and AC electric fields in the magnetosphere. Space Sci. Rev. 14, 272 (1973)
F.S. Mozer et al., A proposal to measure quasi-static electric fields on the ISEE-1 mother daughter satellite, University of California Berkeley Space Science Technical Note, UCBSSL No. 454 (1973)
F.S. Mozer et al., The dc and ac electric field, plasma density, plasma temperature and field-aligned current experiments on the S3-# spacecraft. J. Geophys. Res. 84(A10), 5875 (1979)
T.P. O’Brien, K.R. Lorentzen, I.R. Mann, N.P. Meredith, J.B. Blake, J.F. Fennell, M.D. Looper, D.K. Milling, R.R. Anderson, Energization of relativistic electrons in the presence of ULF power and MeV microbursts: evidence for dual ULF and VLF acceleration. J. Geophys. Res. 108(A8), 1329 (2003). doi:10.1029/2002JA009784
A. Pedersen, Solar wind and magnetospheric plasma diagnostics by spacecraft electrostatic potential measurements. Ann. Geophys. 13, 118 (1995)
A. Pedersen et al., Electron density estimations derived from spacecraft potential measurements on cluster in tenuous plasma regimes. J. Geophys. Res. 113, A07S33 (2008). doi:10.1029/2007JA012636
G. Reeves et al. (this issue)
I. Roth, M. Temerin, M.K. Hudson, Resonant enhancement of relativistic electron fluxes during geomagnetically active periods. Ann. Geophys. 17, 631 (1999)
D. Rowland, J.R. Wygant, The dependence of the large scale electric field in the inner magnetosphere on magnetic activity. J. Geophys. Res. 103(A7), 14959 (1998)
D. Rowland, The electrodynamics of the inner magnetosphere during major geomagnetic storms. PhD Thesis, University of Minnesota (2002)
O. Santolik, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108, 1278 (2003). doi:10.1029/20002JA009791
H. Spence et al. (this issue)
D. Summers, Y. Omura, Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophys. Res. Lett. 34, L24205 (2007). doi:10.1029/2007GL032226
A. Vampola, H. Korth, Electron drift echoes in the inner magnetosphere. Geophys. Res. Lett. 19, 625 (1992)
L. Wilson et al., The properties of large amplitude whistler mode waves in the magnetosphere: propagation and relationship with geomagnetic activity. Geophys. Res. Lett. 38, L17107 (2011). doi:10.1029/2011GL048671
J.R. Wygant, P.R. Harvey, D. Pankow, F.S. Mozer, N. Maynard, H. Singer, M. Smiddy, W. Sullivan, P. Anderson, The CRRES electric field experiment/Langmuir probe. J. Spacecr. Rockets 29, 601 (1992)
J.R. Wygant, F. Mozer, M. Temerin, J. Blake, N. Maynard, H. Singer, M. Smiddy, Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV drift echoes. Geophys. Res. Lett. 21, 1730 (1994)
J.R. Wygant, H.J. Singer, M. Temerin, F. Mozer, M.K. Hudson, Experimental evidence on the role of the large spatial scale electric field in creating the ring current. J. Geophys. Res. 98, JA01436 (1998)
H.-C. Yeh, J.C. Foster, F.J. Rich, W. Swider, Storm-time electric field penetration observed at mid-latitude. J. Geophys. Res. 96, 5707–5721 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 The Author(s)
About this chapter
Cite this chapter
Wygant, J.R. et al. (2013). The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission. In: Fox, N., Burch, J.L. (eds) The Van Allen Probes Mission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7433-4_6
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7433-4_6
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7432-7
Online ISBN: 978-1-4899-7433-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)