Abstract
Symbolic regression (SR) is one the most popular applications of genetic programming (GP) and an attractive alternative to the standard deterministic regression approaches due to its flexibility in generating free-form mathematical models from observed data without any domain knowledge. However, GP suffers from various issues hindering the applicability of the technique to real-life problems. In this paper, we show that a hybrid deterministic regression (DR)/genetic programming based symbolic regression (GP-SR) algorithm outperforms GP-SR alone on a brain imaging dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ACM (2011) Robot biologist solves complex problem from scratch. http://cacm.acm.org/careers/136345-robot-biologist-solves-complex-problem-from-scratch/fulltext
Amil NM, Bredeche N, Gagné C, Gelly S, Schoenauer M, Teytaud O (2009) A statistical learning perspective of genetic programming. In: Vanneschi L, Gustafson S, Moraglio A, De Falco I, Ebner M (eds) Proceedings of the 12th European conference on genetic programming, EuroGP 2009, Tuebingen. Lecture notes in computer science, vol 5481. Springer, pp 327–338. doi:10.1007/978-3-642-01181-8-28
Castelli M, Manzoni L, Silva S, Vanneschi L (2011) A quantitative study of learning and generalization in genetic programming. In: Silva S, Foster J, Nicolau M, Machado P, Giacobini M (eds) Genetic programming, Torino. Lecture notes in computer science, vol 6621. Springer, Berlin/Heidelberg, pp 25–36
Dubcakova R (2011) Eureqa: software review. Genet Program Evolvable Mach 12(2):173–178. doi:10.1007/s10710-010-9124-z
GPG (2013) Genetic programming on general purpose graphics processing units. http://www.gpgpgpu.com/
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
Icke I, Bongard J (2013) Improving genetic programming based symbolic regression using machine learning. In: IEEE congress on evolutionary computation, CEC 2013, Cancun
Jerome Friedman TH, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22
Jiang H (2013) Glmnet for Matlab. http://www-stat.stanford.edu/~tibs/glmnet-matlab/
Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT, Cambridge
Koza JR (2010) Human-competitive results produced by genetic programming. Genet Program Evolvable Mach 11(3/4):251–284. doi:10.1007/s10710-010-9112-3, tenth anniversary issue: progress in genetic programming and evolvable machines
Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, Glahn DC, Beckmann CF, Smith SM, Fox PT (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23(12):4022–4037
McConaghy T (2011) FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo R, Vladislavleva E, Moore JH (eds) Genetic programming theory and practice IX. Genetic and evolutionary computation. Springer, Ann Arbor, chap 13, pp 235–260. doi:10.1007/978-1-4614-1770-5-13
McRee RK (2010) Symbolic regression using nearest neighbor indexing. In: Gustafson S, Kotanchek M (eds) GECCO 2010 symbolic regression workshop, Portland. ACM, pp 1983–1990. doi:10.1145/1830761.1830841
Michalski RS (2000) Learnable evolution model: evolutionary processes guided by machine learning. Mach Learn 38:9–40
Murphy KP (2012) Machine learning a probabilistic perspective. MIT Press, Cambridge, MA
Nikolaev NY, Iba H (2001) Regularization approach to inductive genetic programming. IEEE Trans Evol Comput 54(4):359–375. http://ieeexplore.ieee.org/iel5/4235/20398/00942530.pdf?isNumber=20398
O’Neill M, Vanneschi L, Gustafson S, Banzhaf W (2010) Open issues in genetic programming. Genet Program Evolvable Mach 11(3–4):339–363. doi:10.1007/s10710-010-9113-2, http://dx.doi.org/10.1007/s10710-010-9113-2
Poldrack RA, Nichols TE (2011) Handbook of functional MRI data analysis. Cambridge University Press, New York
Searson D (2013) GPTIPS for Matlab. https://sites.google.com/site/gptips4matlab/
Sherry D, Veeramachaneni K, McDermott J, O’Reilly UM (2011) Flex-GP: genetic programming on the cloud. In: Di Chio C, Agapitos A, Cagnoni S, Cotta C, Fernandez de Vega F, Di Caro GA, Drechsler R, Ekart A, Esparcia-Alcazar AI, Farooq M, Langdon WB, Merelo JJ, Preuss M, Richter H, Silva S, Simoes A, Squillero G, Tarantino E, Tettamanzi AGB, Togelius J, Urquhart N, Uyar AS, Yannakakis GN (eds) Applications of evolutionary computing, evoapplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, EvoSTOC, Malaga. Lecture notes in computer science, vol 7248. Springer, pp 477–486. doi:10.1007/978-3-642-29178-4-48
Smits G, Kordon A, Vladislavleva K, Jordaan E, Kotanchek M (2005) Variable selection in industrial datasets using Pareto genetic programming. In: Yu T, Riolo RL, Worzel B (eds) Genetic programming theory and practice III. Genetic programming, vol 9. Springer, Ann Arbor, chap 6, pp 79–92
Stijven S, Minnebo W, Vladislavleva K (2011) Separating the wheat from the chaff: on feature selection and feature importance in regression random forests and symbolic regression. In: Gustafson S, Vladislavleva E (eds) 3rd symbolic regression and modeling workshop for GECCO 2011, Dublin. ACM, pp 623–630. doi:10.1145/2001858.2002059
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc (Ser B) 58:267–288
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67(2):301–320
Acknowledgements
This research was partially supported by a DARPA grant #FA8650-11-1-7155. We thank the IMAGEN consortium for providing us with the resting-state fMRI dataset. The authors also acknowledge the Vermont Advanced Computing Core which is supported by NASA (NNX 06AC88G), at the University of Vermont for providing High Performance Computing resources that have contributed to the research results reported within this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Icke, I., Allgaier, N.A., Danforth, C.M., Whelan, R.A., Garavan, H.P., Bongard, J.C. (2014). A Deterministic and Symbolic Regression Hybrid Applied to Resting-State fMRI Data. In: Riolo, R., Moore, J., Kotanchek, M. (eds) Genetic Programming Theory and Practice XI. Genetic and Evolutionary Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0375-7_9
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0375-7_9
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-0374-0
Online ISBN: 978-1-4939-0375-7
eBook Packages: Computer ScienceComputer Science (R0)