Abstract
fMRI is a powerful tool used in the study of brain function. It can noninvasively detect signal changes in areas of the brain where neuronal activity is varying. This chapter is a comprehensive description of the various steps in the statistical analysis of fMRI data. This will cover topics such as the general linear model (including orthogonality, hemodynamic variability, noise modeling, and the use of contrasts), multisubject statistics, and statistical thresholding (including random field theory and permutation methods).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For the remainder of this chapter, reference to “stimulation” should be taken to include also the carrying out of physical or cognitive activity.
- 2.
The particular HRF in Fig. 5 has parameter values μ 1 = 6 s, σ 1 = 2.45 s, μ 2 = 16 s, σ 2 = 4 s, and ρ = 6.
- 3.
Note that this common usage is slightly different from the definition sometimes used in the statistics literature, where effect size means β divided by the noise level.
References
Friston K, Worsley K, Frackowiak R, Mazziotta J, Evans A (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:214–220
Hykin J, Bowtell R, Glover P, Coxon R, Blumhardt L, Mansfield P (1995) Investigation of the linearity of functional activation signal changes in the brain using echo planar imaging (EPI) at 3.0 T. In: Proc of the SMR and ESMRB Joint Meeting. p 795
Cohen M (1997) Parametric analysis of fMRI data using linear systems methods. NeuroImage 6:93–103
Dale A, Buckner R (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340
Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport 9:3735–3739
Bullmore E, Brammer M, Williams S et al (1996) Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35:261–277
Friston K, Josephs O, Zarahn E, Holmes A, Rouquette S, Poline J-B (2000) To smooth or not to smooth? NeuroImage 12:196–208
Woolrich M, Ripley B, Brady J, Smith S (2001) Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage 14:1370–1386
Locascio J, Jennings P, Moore C, Corkin S (1997) Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging. Hum Brain Mapp 5:168–193
Purdon P, Weisskoff R (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp 6:239–249
Marchini J, Ripley B (2000) A new statistical approach to detecting significant activation in functional MRI. NeuroImage 12:366–380
Worsley K, Liao C, Aston J et al (2002) A general statistical analysis for fMRI data. NeuroImage 15:1–15
Gautama T, Van Hulle MM (2004) Optimal spatial regularisation of autocorrelation estimates in fMRI analysis. Neuroimage 23:1203–1216
Penny W, Kiebel S, Friston K (2003) Variational Bayesian inference for fMRI time series. NeuroImage 19:1477–1491
Woolrich M, Behrens T, Smith S (2004) Constrained linear basis sets for HRF modelling using Variational Bayes. NeuroImage 21:1748–1761
Smith S, Jenkinson M, Beckmann C, Miller K, Woolrich M (2007) Meaningful design and contrast estimability in fMRI. NeuroImage 34:127–136
Dale A, Greve D, Burock M (1999) Optimal stimulus sequences for event-related fMRI. NeuroImage 9:S33
Wager T, Nichols T (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309
Josephs O, Turner R, Friston K (1997) Event-related fMRI. Hum Brain Mapp 5:1–7
Lange N, Zeger S (1997) Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging. Appl Stat 46:1–29
Genovese C (2000) A Bayesian time-course model for functional magnetic resonance imaging data (with discussion). J Am Stat Assoc 95:691–703
Friston KJ (2002) Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage 16:513–530
Marrelec G, Benali H, Ciuciu P, Pélégrini-Issac M, Poline J-B (2003) Robust Bayesian estimation of the hemodynamic response function in event-related BOLD MRI using basic physiological information. Hum Brain Mapp 19:1–17
Woolrich M, Jenkinson M, Brady J, Smith S (2004) Fully Bayesian spatio-temporal modelling of FMRI data. IEEE Trans Med Imaging 23:213–231
Buxton R, Uludag K, Dubowitz D, Liu T (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23(S1):220–233
Boynton G, Engel S, Glover G, Heeger D (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221
Glover G (1999) Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9:416–429
Friston K, Josephs O, Rees G, Turner R (1998) Nonlinear event-related responses in fMRI. Magn Reson Med 39:41–52
Beckmann C, Smith S (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152
Glover G, Li T, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: Retroicor. Magn Reson Med 44:162–167
Holmes A, Friston K (1998) Generalisability, random effects & population inference. Fourth Int Conf on Functional Mapping of the Human Brain. NeuroImage 7:S754
Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York
Collins D, Neelin P, Peters T, Evans A (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomo 18:192–205
Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: theory. NeuroImage 16:465–483
Beckmann C, Jenkinson M, Smith S (2003) General multi-level linear modelling for group analysis in FMRI. NeuroImage 20:1052–1063
Woolrich M, Behrens T, Beckmann C, Jenkinson M, Smith S (2004) Multi-level linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 21:1732–1747
Kherif F, Poline J-B, Meriaux S, Benali H, Flandin G, Brett M (2003) Group analysis in functional neuroimaging: selecting subjects using similarity measures. Neuroimage 20:2197–2208
Luo W-L, Nichols TE (2003) Diagnosis and exploration of massively univariate neuroimaging models. Neuroimage 19:1014–1032
Seghier M, Friston K, Price C (2007) Detecting subject-specific activations using fuzzy clustering. Neuroimage 36:594–605
Wager T, Keller M, Lacey S, Jonides J (2005) Increased sensitivity in neuroimaging analyses using robust regression. NeuroImage 26:99–113
Woolrich M (2008) Robust group analysis using outlier inference. NeuroImage 41:286–301
Meriaux S, Roche A, Dehaene-Lambertz G, Thirion B, Poline J (2006) Combined permutation test and mixed-effect model for group average analysis in fMRI. Hum Brain Mapp 27:402–410
Roche A, Meriaux S, Keller M, Thirion B (2007) Mixed-effect statistics for group analysis in fMRI: a nonpara-metric maximum likelihood approach. Neuroimage 38:501–510
Thirion B, Pinel P, Mriaux S, Roche A, Dehaene S, Poline J (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35:105–120
Hartvig NV, Jensen JL (2000) Spatial mixture modeling of fMRI data. Hum Brain Mapp 11:233–248
Hayasaka S, Nichols TE (2003) Validating cluster size inference: random field and permutation methods. NeuroImage 20:2343–2356
Friston KJ, Holmes A, Poline J-B, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. NeuroImage 4:223–235
Nichols TE, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12:419–446
Cao J, Worsley KJ (2001) Applications of random fields in human brain mapping. In: Moore M, (ed) Spatial statistics: methodological aspects and applications, vol 159, Springer lecture notes in statistics. Springer. pp 169–182
Worsley KJ, Evans AC, Marrett S, Neelin P (1992) Three-dimensional statistical analysis for cbf activation studies in human brain. J Cerebr Blood F Met 12:900–918
Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73
Hayasaka S, Luan Phan K, Liberzon I, Worsley KJ, Nichols TE (2004) Nonstationary cluster-size inference with random field and permutation methods. NeuroImage 22:676–687
Nichols T, Holmes A (2001) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25
Bullmore E, Long C, Suckling J et al (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12:61–78
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
Genovese C, Lazar N, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15:870–878
Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188
Everitt B, Bullmore E (1999) Mixture model mapping of brain activation in functional magnetic resonance images. Hum Brain Mapp 7:1–14
Hartvig N (2000) A stochastic geometry model for fMRI data. Technical Report 410. Department of Theoretical Statistics, University of Aarhus
Woolrich M, Behrens T (2006) Variational Bayes inference of spatial mixture models for segmentation. IEEE Trans Med Imaging 25:1380–1391
Bartsch A, Homola G, Biller A, Solymosi L, Bendszus M (2006) Diagnostic functional MRI: illustrated clinical applications and decision-making. J Magn Reson Imaging 23:921–932
Van De Ville D, Blu T, Unser M (2006) Surfing the brain – an overview of wavelet-based techniques for fMRI data analysis. IEEE Eng Med Biol 25:65–78
Smith SM, Nichols TE (2008) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. doi:10.1016/j.neuroimage.2008.03.061, In press; Epub ahead of print April 11, 2008
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this protocol
Cite this protocol
Woolrich, M.W., Beckmann, C.F., Nichols, T.E., Smith, S.M. (2016). Statistical Analysis of fMRI Data. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_7
Download citation
DOI: https://doi.org/10.1007/978-1-4939-5611-1_7
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-5609-8
Online ISBN: 978-1-4939-5611-1
eBook Packages: Springer Protocols