Abstract
The peptide identification problem lies at the heart of modern proteomic methodology, from which the presence of a particular protein or proteins in a sample may be inferred. The challenge is to find the most likely amino acid sequence, which corresponds to each tandem mass spectrum that has been collected, and produce some kind of score and associated statistical measure that the putative identification is correct. This approach assumes that the peptide (and parent protein) sequence in question is known and is present in the database which is to be searched, as opposed to de novo methods, which seek to identify the peptide ab initio. This chapter will provide an overview of the methods that common, popular software tools employ to search protein sequence databases to provide the non-expert reader with sufficient background to appreciate the choices they can make. This will cover the approaches used to compare experimental and theoretical spectra and some of the methods used to validate and provide higher confidence in the assignments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Colinge, J., and Bennett, K. L. (2007) Introduction to computational proteomics. Plos Computational Biology 3, 1151-60.
Hernandez, P., Muller, M., and Appel, R. D. (2006) Automated protein identification by tandem mass spectrometry: Issues and strategies. Mass Spectrometry Reviews 25, 235-54.
Steen, H., and Mann, M. (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nature Reviews Molecular Cell Biology 5, 699-711.
Veltri, P. (2008) Algorithms and tools for analysis and management of mass spectrometry data. Briefings in Bioinformatics 9, 144-55.
Webb-Robertson, B. J. M., and Cannon, W. R. (2007) Current trends in computational inference from mass spectrometry-based proteomics. Briefings in Bioinformatics 8, 304-17.
Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242-7.
Eng, J. K., Fischer, B., Grossmann, J., and MacCoss, M. J. (2008) A fast SEQUEST cross correlation algorithm. Journal of Proteome Research 7, 4598-602.
Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5, 976-89.
Perkins, D. N., Pappin, D. J. C., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-67.
Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X. Y., Shi, W. Y., and Bryant, S. H. (2004) Open mass spectrometry search algorithm. Journal of Proteome Research 3, 958-64.
Craig, R., and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466-67.
Tabb, D. L., Fernando, C. G., and Chambers, M. C. (2007) MyriMatch: Highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. Journal of Proteome Research 6, 654-61.
Colinge, J., Masselot, A., Giron, M., Dessingy, T., and Magnin, J. (2003) OLAV: Towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454-63.
Park, C. Y., Klammer, A. A., Kall, L., MacCoss, M. J., and Noble, W. S. (2008) Rapid and accurate peptide identification from tandem mass spectra. Journal of Proteome Research 7, 3022-27.
Shilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., Hunter, C. L., Nuwaysir, L. M., and Schaeffer, D. A. (2007) The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular & Cellular Proteomics 6, 1638-55.
Tanner, S., Shu, H. J., Frank, A., Wang, L. C., Zandi, E., Mumby, M., Pevzner, P. A., and Bafna, V. (2005) InsPecT: Identification of posttransiationally modified peptides from tandem mass spectra. Analytical Chemistry 77, 4626-39.
Zhang, N., Aebersold, R., and Schwilkowski, B. (2002) ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2, 1406-12.
Matthiesen, R., Trelle, M. B., Hojrup, P., Bunkenborg, J., and Jensen, O. N. (2005) VEMS 3.0: Algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Journal of Proteome Research 4, 2338-47.
Colinge, J., Masselot, A., Cusin, I., Mahe, E., Niknejad, A., Argoud-Puy, G., Reffas, S., Bederr, N., Gleizes, A., Rey, P. A., and Bougueleret, L. (2004) High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics. Proteomics 4, 1977-84.
Samuelsson, J., Dalevi, D., Levander, F., and Rognvaldsson, T. (2004) Modular, scriptable and automated analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics 20, 3628-35.
Frank, A. M., Bandeira, N., Shen, Z., Tanner, S., Briggs, S. P., Smith, R. D., and Pevzner, P. A. (2008) Clustering millions of tandem mass spectra. J Proteome Res 7, 113-22.
Salmi, J., Moulder, R., Filen, J. J., Nevalainen, O. S., Nyman, T. A., Lahesmaa, R., and Aittokallio, T. (2006) Quality classification of tandem mass spectrometry data. Bioinformatics 22, 400-6.
Tabb, D. L., MacCoss, M. J., Wu, C. C., Anderson, S. D., and Yates, J. R., 3rd (2003) Similarity among tandem mass spectra from proteomic experiments: detection, significance, and utility. Anal Chem 75, 2470-7.
Tabb, D. L., Thompson, M. R., Khalsa-Moyers, G., VerBerkmoes, N. C., and McDonald, W. H. (2005) MS2Grouper: group assessment and synthetic replacement of duplicate proteomic tandem mass spectra. J Am Soc Mass Spectrom 16, 1250-61.
Wong, J. W., Sullivan, M. J., Cartwright, H. M., and Cagney, G. (2007) msmsEval: tandem mass spectral quality assignment for high-throughput proteomics. BMC Bioinformatics 8, 51.
Beer, I., Barnea, E., Ziv, T., and Admon, A. (2004) Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4, 950-60.
Huang, Y. Y., Triscari, J. M., Tseng, G. C., Pasa-Tolic, L., Lipton, M. S., Smith, R. D., and Wysocki, V. H. (2005) Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Analytical Chemistry 77, 5800-13.
de Godoy, L. M. F., Olsen, J. V., Cox, J., Nielsen, M. L., Hubner, N. C., Frohlich, F., Walther, T. C., and Mann, M. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251-U60.
McDonald, L., and Beynon, R. J. (2006) Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. Nature Protocols 1, 1790-98.
McDonald, L., Robertson, D. H. L., Hurst, J. L., and Beynon, R. J. (2005) Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nature Methods 2, 955-57.
Rodriguez, J., Gupta, N., Smith, R. D., and Pevzner, P. A. (2008) Does trypsin cut before proline? Journal of Proteome Research 7, 300-05.
Olsen, J. V., Ong, S. E., and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics 3, 608-14.
Siepen, J. A., Keevil, E. J., Knight, D., and Hubbard, S. J. (2006) Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. Molecular & Cellular Proteomics 5, 1350.
Modrek, B., and Lee, C. J. (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nature Genetics 34, 177-80.
Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and Apweiler, R. (2004) The International Protein Index: An integrated database for proteomics experiments. Proteomics 4, 1985-88.
Breci, L. A., Tabb, D. L., Yates, J. R., 3rd, and Wysocki, V. H. (2003) Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal Chem 75, 1963-71.
Tabb, D. L., Huang, Y., Wysocki, V. H., and Yates, J. R., 3rd (2004) Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides. Anal Chem 76, 1243-8.
Tabb, D. L., Smith, L. L., Breci, L. A., Wysocki, V. H., Lin, D., and Yates, J. R., 3rd (2003) Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal Chem 75, 1155-63.
Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P., and Gygi, S. P. (2004) Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat Biotechnol 22, 214-9.
Gehrke, A., Sun, S., Kurgan, L., Ahn, N., Resing, K., Kafadar, K., and Cios, K. (2008) Improved machine learning method for analysis of gas phase chemistry of peptides. BMC Bioinformatics 9, 515.
Zhou, C., Bowler, L. D., and Feng, J. (2008) A machine learning approach to explore the spectra intensity pattern of peptides using tandem mass spectrometry data. BMC Bioinformatics 9, 325.
MacCoss, M. J., Wu, C. C., and Yates, J. R., 3rd (2002) Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal Chem 74, 5593-9.
Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74, 5383-92.
Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646-58.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-402.
Balgley, B. M., Laudeman, T., Yang, L., Song, T., and Lee, C. S. (2007) Comparative evaluation of tandem MS search algorithms using a target-decoy search strategy. Mol Cell Proteomics 6, 1599-608.
Jones, A. R., Siepen, J.A., Hubbard, S.J., Paton, N.W. (2009) Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines. Proteomics 9, 1220-9.
Searle, B. C., Turner, M., and Nesvizhskii, A. I. (2008) Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies. J Proteome Res 7, 245-53.
Nesvizhskii, A. I. (2007) Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol 367, 87-119.
Choi, H., and Nesvizhskii, A. I. (2008) False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J Proteome Res 7, 47-50.
Kall, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res 7, 29-34.
Kall, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Posterior error probabilities and false discovery rates: two sides of the same coin. J Proteome Res 7, 40-4.
Kim, S., Gupta, N., and Pevzner, P. A. (2008) Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res 7, 3354-63.
Nesvizhskii, A. I., Vitek, O., and Aebersold, R. (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nature Methods 4, 787-97.
Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2, 43-50.
Tabb, D. L. (2008) What’s driving false discovery rates? J Proteome Res 7, 45-6.
Wang, G., Wu, W. W., Zhang, Z., Masilamani, S., and Shen, R. F. (2009) Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Anal Chem 81, 146-59.
Nesvizhskii, A. I., and Aebersold, R. (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4, 1419-40.
Chepanoske, C. L., Richardson, B. E., von Rechenberg, M., and Peltier, J. M. (2005) Average peptide score: a useful parameter for identification of proteins derived from database searches of liquid chromatography/tandem mass spectrometry data. Rapid Commun Mass Spectrom 19, 9-14.
Shadforth, I., Dunkley, T., Lilley, K., Crowther, D., and Bessant, C. (2005) Confident protein identification using the average peptide score method coupled with search-specific, ab initio thresholds. Rapid Commun Mass Spectrom 19, 3363-8.
Wright, J. C., Sugden, D., Francis-McIntyre, S., Riba-Garcia, I., Gaskell, S. J., Grigoriev, I. V., Baker, S. E., Beynon, R. J., and Hubbard, S. J. (2009) Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 10, 61.
Taylor, C. F. (2006) Minimum reporting requirements for proteomics: a MIAPE primer. Proteomics 6 Suppl 2, 39-44.
Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P. A., Julian, R. K., Jr., Jones, A. R., Zhu, W., Apweiler, R., Aebersold, R., Deutsch, E. W., Dunn, M. J., Heck, A. J., Leitner, A., Macht, M., Mann, M., Martens, L., Neubert, T. A., Patterson, S. D., Ping, P., Seymour, S. L., Souda, P., Tsugita, A., Vandekerckhove, J., Vondriska, T. M., Whitelegge, J. P., Wilkins, M. R., Xenarios, I., Yates, J. R., 3rd, and Hermjakob, H. (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25, 887-93.
Mead, J. A., Shadforth, I. P., and Bessant, C. (2007) Public proteomic MS repositories and pipelines: available tools and biological applications. Proteomics 7, 2769-86.
Acknowledgments
The author would like to thank Jenny Siepen, Julian Selley and Andrew Jones for useful comments on the manuscript, and BBSRC for support from various research grants (BB/E024912/1, BB/F004605/1).as well as the EU ProDaC grant (European Commission project, 6th framework programme, project number LSHG-CT-2006-036814).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Humana Press, a part of Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Hubbard, S.J. (2010). Computational Approaches to Peptide Identification via Tandem MS. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_3
Download citation
DOI: https://doi.org/10.1007/978-1-60761-444-9_3
Published:
Publisher Name: Humana Press
Print ISBN: 978-1-60761-443-2
Online ISBN: 978-1-60761-444-9
eBook Packages: Springer Protocols