Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational Approaches to Peptide Identification via Tandem MS

  • Protocol
  • First Online:
Proteome Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 604))

Abstract

The peptide identification problem lies at the heart of modern proteomic methodology, from which the presence of a particular protein or proteins in a sample may be inferred. The challenge is to find the most likely amino acid sequence, which corresponds to each tandem mass spectrum that has been collected, and produce some kind of score and associated statistical measure that the putative identification is correct. This approach assumes that the peptide (and parent protein) sequence in question is known and is present in the database which is to be searched, as opposed to de novo methods, which seek to identify the peptide ab initio. This chapter will provide an overview of the methods that common, popular software tools employ to search protein sequence databases to provide the non-expert reader with sufficient background to appreciate the choices they can make. This will cover the approaches used to compare experimental and theoretical spectra and some of the methods used to validate and provide higher confidence in the assignments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colinge, J., and Bennett, K. L. (2007) Introduction to computational proteomics. Plos Computational Biology 3, 1151-60.

    Article  CAS  Google Scholar 

  2. Hernandez, P., Muller, M., and Appel, R. D. (2006) Automated protein identification by tandem mass spectrometry: Issues and strategies. Mass Spectrometry Reviews 25, 235-54.

    Article  CAS  PubMed  Google Scholar 

  3. Steen, H., and Mann, M. (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nature Reviews Molecular Cell Biology 5, 699-711.

    Article  CAS  PubMed  Google Scholar 

  4. Veltri, P. (2008) Algorithms and tools for analysis and management of mass spectrometry data. Briefings in Bioinformatics 9, 144-55.

    Article  CAS  PubMed  Google Scholar 

  5. Webb-Robertson, B. J. M., and Cannon, W. R. (2007) Current trends in computational inference from mass spectrometry-based proteomics. Briefings in Bioinformatics 8, 304-17.

    Article  CAS  PubMed  Google Scholar 

  6. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242-7.

    Article  CAS  PubMed  Google Scholar 

  7. Eng, J. K., Fischer, B., Grossmann, J., and MacCoss, M. J. (2008) A fast SEQUEST cross correlation algorithm. Journal of Proteome Research 7, 4598-602.

    Article  CAS  PubMed  Google Scholar 

  8. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5, 976-89.

    Article  CAS  Google Scholar 

  9. Perkins, D. N., Pappin, D. J. C., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-67.

    Article  CAS  PubMed  Google Scholar 

  10. Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X. Y., Shi, W. Y., and Bryant, S. H. (2004) Open mass spectrometry search algorithm. Journal of Proteome Research 3, 958-64.

    Article  CAS  PubMed  Google Scholar 

  11. Craig, R., and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466-67.

    Article  CAS  PubMed  Google Scholar 

  12. Tabb, D. L., Fernando, C. G., and Chambers, M. C. (2007) MyriMatch: Highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. Journal of Proteome Research 6, 654-61.

    Article  CAS  PubMed  Google Scholar 

  13. Colinge, J., Masselot, A., Giron, M., Dessingy, T., and Magnin, J. (2003) OLAV: Towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454-63.

    Article  CAS  PubMed  Google Scholar 

  14. Park, C. Y., Klammer, A. A., Kall, L., MacCoss, M. J., and Noble, W. S. (2008) Rapid and accurate peptide identification from tandem mass spectra. Journal of Proteome Research 7, 3022-27.

    Article  CAS  PubMed  Google Scholar 

  15. Shilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., Hunter, C. L., Nuwaysir, L. M., and Schaeffer, D. A. (2007) The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular & Cellular Proteomics 6, 1638-55.

    Article  CAS  Google Scholar 

  16. Tanner, S., Shu, H. J., Frank, A., Wang, L. C., Zandi, E., Mumby, M., Pevzner, P. A., and Bafna, V. (2005) InsPecT: Identification of posttransiationally modified peptides from tandem mass spectra. Analytical Chemistry 77, 4626-39.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, N., Aebersold, R., and Schwilkowski, B. (2002) ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2, 1406-12.

    Article  CAS  PubMed  Google Scholar 

  18. Matthiesen, R., Trelle, M. B., Hojrup, P., Bunkenborg, J., and Jensen, O. N. (2005) VEMS 3.0: Algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Journal of Proteome Research 4, 2338-47.

    Article  CAS  PubMed  Google Scholar 

  19. Colinge, J., Masselot, A., Cusin, I., Mahe, E., Niknejad, A., Argoud-Puy, G., Reffas, S., Bederr, N., Gleizes, A., Rey, P. A., and Bougueleret, L. (2004) High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics. Proteomics 4, 1977-84.

    Article  CAS  PubMed  Google Scholar 

  20. Samuelsson, J., Dalevi, D., Levander, F., and Rognvaldsson, T. (2004) Modular, scriptable and automated analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics 20, 3628-35.

    Article  CAS  PubMed  Google Scholar 

  21. Frank, A. M., Bandeira, N., Shen, Z., Tanner, S., Briggs, S. P., Smith, R. D., and Pevzner, P. A. (2008) Clustering millions of tandem mass spectra. J Proteome Res 7, 113-22.

    Article  CAS  PubMed  Google Scholar 

  22. Salmi, J., Moulder, R., Filen, J. J., Nevalainen, O. S., Nyman, T. A., Lahesmaa, R., and Aittokallio, T. (2006) Quality classification of tandem mass spectrometry data. Bioinformatics 22, 400-6.

    Article  CAS  PubMed  Google Scholar 

  23. Tabb, D. L., MacCoss, M. J., Wu, C. C., Anderson, S. D., and Yates, J. R., 3rd (2003) Similarity among tandem mass spectra from proteomic experiments: detection, significance, and utility. Anal Chem 75, 2470-7.

    Article  CAS  PubMed  Google Scholar 

  24. Tabb, D. L., Thompson, M. R., Khalsa-Moyers, G., VerBerkmoes, N. C., and McDonald, W. H. (2005) MS2Grouper: group assessment and synthetic replacement of duplicate proteomic tandem mass spectra. J Am Soc Mass Spectrom 16, 1250-61.

    Article  CAS  PubMed  Google Scholar 

  25. Wong, J. W., Sullivan, M. J., Cartwright, H. M., and Cagney, G. (2007) msmsEval: tandem mass spectral quality assignment for high-throughput proteomics. BMC Bioinformatics 8, 51.

    Article  PubMed  Google Scholar 

  26. Beer, I., Barnea, E., Ziv, T., and Admon, A. (2004) Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4, 950-60.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, Y. Y., Triscari, J. M., Tseng, G. C., Pasa-Tolic, L., Lipton, M. S., Smith, R. D., and Wysocki, V. H. (2005) Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Analytical Chemistry 77, 5800-13.

    Article  CAS  PubMed  Google Scholar 

  28. de Godoy, L. M. F., Olsen, J. V., Cox, J., Nielsen, M. L., Hubner, N. C., Frohlich, F., Walther, T. C., and Mann, M. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251-U60.

    Article  PubMed  Google Scholar 

  29. McDonald, L., and Beynon, R. J. (2006) Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. Nature Protocols 1, 1790-98.

    Article  CAS  PubMed  Google Scholar 

  30. McDonald, L., Robertson, D. H. L., Hurst, J. L., and Beynon, R. J. (2005) Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nature Methods 2, 955-57.

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez, J., Gupta, N., Smith, R. D., and Pevzner, P. A. (2008) Does trypsin cut before proline? Journal of Proteome Research 7, 300-05.

    Article  CAS  PubMed  Google Scholar 

  32. Olsen, J. V., Ong, S. E., and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics 3, 608-14.

    Article  CAS  Google Scholar 

  33. Siepen, J. A., Keevil, E. J., Knight, D., and Hubbard, S. J. (2006) Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. Molecular & Cellular Proteomics 5, 1350.

    Google Scholar 

  34. Modrek, B., and Lee, C. J. (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nature Genetics 34, 177-80.

    Article  CAS  PubMed  Google Scholar 

  35. Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and Apweiler, R. (2004) The International Protein Index: An integrated database for proteomics experiments. Proteomics 4, 1985-88.

    Article  CAS  PubMed  Google Scholar 

  36. Breci, L. A., Tabb, D. L., Yates, J. R., 3rd, and Wysocki, V. H. (2003) Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal Chem 75, 1963-71.

    Article  CAS  PubMed  Google Scholar 

  37. Tabb, D. L., Huang, Y., Wysocki, V. H., and Yates, J. R., 3rd (2004) Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides. Anal Chem 76, 1243-8.

    Article  CAS  PubMed  Google Scholar 

  38. Tabb, D. L., Smith, L. L., Breci, L. A., Wysocki, V. H., Lin, D., and Yates, J. R., 3rd (2003) Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal Chem 75, 1155-63.

    Article  CAS  PubMed  Google Scholar 

  39. Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P., and Gygi, S. P. (2004) Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat Biotechnol 22, 214-9.

    Article  CAS  PubMed  Google Scholar 

  40. Gehrke, A., Sun, S., Kurgan, L., Ahn, N., Resing, K., Kafadar, K., and Cios, K. (2008) Improved machine learning method for analysis of gas phase chemistry of peptides. BMC Bioinformatics 9, 515.

    Article  PubMed  Google Scholar 

  41. Zhou, C., Bowler, L. D., and Feng, J. (2008) A machine learning approach to explore the spectra intensity pattern of peptides using tandem mass spectrometry data. BMC Bioinformatics 9, 325.

    Article  PubMed  Google Scholar 

  42. MacCoss, M. J., Wu, C. C., and Yates, J. R., 3rd (2002) Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal Chem 74, 5593-9.

    Article  CAS  PubMed  Google Scholar 

  43. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74, 5383-92.

    Article  CAS  PubMed  Google Scholar 

  44. Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646-58.

    Article  CAS  PubMed  Google Scholar 

  45. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-402.

    Article  CAS  PubMed  Google Scholar 

  46. Balgley, B. M., Laudeman, T., Yang, L., Song, T., and Lee, C. S. (2007) Comparative evaluation of tandem MS search algorithms using a target-decoy search strategy. Mol Cell Proteomics 6, 1599-608.

    Article  CAS  PubMed  Google Scholar 

  47. Jones, A. R., Siepen, J.A., Hubbard, S.J., Paton, N.W. (2009) Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines. Proteomics 9, 1220-9.

    Google Scholar 

  48. Searle, B. C., Turner, M., and Nesvizhskii, A. I. (2008) Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies. J Proteome Res 7, 245-53.

    Article  CAS  PubMed  Google Scholar 

  49. Nesvizhskii, A. I. (2007) Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol 367, 87-119.

    CAS  PubMed  Google Scholar 

  50. Choi, H., and Nesvizhskii, A. I. (2008) False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J Proteome Res 7, 47-50.

    Article  CAS  PubMed  Google Scholar 

  51. Kall, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res 7, 29-34.

    Article  PubMed  Google Scholar 

  52. Kall, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Posterior error probabilities and false discovery rates: two sides of the same coin. J Proteome Res 7, 40-4.

    Article  PubMed  Google Scholar 

  53. Kim, S., Gupta, N., and Pevzner, P. A. (2008) Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res 7, 3354-63.

    Article  CAS  PubMed  Google Scholar 

  54. Nesvizhskii, A. I., Vitek, O., and Aebersold, R. (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nature Methods 4, 787-97.

    Article  CAS  PubMed  Google Scholar 

  55. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2, 43-50.

    Article  CAS  PubMed  Google Scholar 

  56. Tabb, D. L. (2008) What’s driving false discovery rates? J Proteome Res 7, 45-6.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, G., Wu, W. W., Zhang, Z., Masilamani, S., and Shen, R. F. (2009) Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Anal Chem 81, 146-59.

    Article  CAS  PubMed  Google Scholar 

  58. Nesvizhskii, A. I., and Aebersold, R. (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4, 1419-40.

    Article  CAS  PubMed  Google Scholar 

  59. Chepanoske, C. L., Richardson, B. E., von Rechenberg, M., and Peltier, J. M. (2005) Average peptide score: a useful parameter for identification of proteins derived from database searches of liquid chromatography/tandem mass spectrometry data. Rapid Commun Mass Spectrom 19, 9-14.

    Article  CAS  PubMed  Google Scholar 

  60. Shadforth, I., Dunkley, T., Lilley, K., Crowther, D., and Bessant, C. (2005) Confident protein identification using the average peptide score method coupled with search-specific, ab initio thresholds. Rapid Commun Mass Spectrom 19, 3363-8.

    Article  CAS  PubMed  Google Scholar 

  61. Wright, J. C., Sugden, D., Francis-McIntyre, S., Riba-Garcia, I., Gaskell, S. J., Grigoriev, I. V., Baker, S. E., Beynon, R. J., and Hubbard, S. J. (2009) Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 10, 61.

    Article  PubMed  Google Scholar 

  62. Taylor, C. F. (2006) Minimum reporting requirements for proteomics: a MIAPE primer. Proteomics 6 Suppl 2, 39-44.

    Article  PubMed  Google Scholar 

  63. Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P. A., Julian, R. K., Jr., Jones, A. R., Zhu, W., Apweiler, R., Aebersold, R., Deutsch, E. W., Dunn, M. J., Heck, A. J., Leitner, A., Macht, M., Mann, M., Martens, L., Neubert, T. A., Patterson, S. D., Ping, P., Seymour, S. L., Souda, P., Tsugita, A., Vandekerckhove, J., Vondriska, T. M., Whitelegge, J. P., Wilkins, M. R., Xenarios, I., Yates, J. R., 3rd, and Hermjakob, H. (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25, 887-93.

    Article  CAS  PubMed  Google Scholar 

  64. Mead, J. A., Shadforth, I. P., and Bessant, C. (2007) Public proteomic MS repositories and pipelines: available tools and biological applications. Proteomics 7, 2769-86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Jenny Siepen, Julian Selley and Andrew Jones for useful comments on the manuscript, and BBSRC for support from various research grants (BB/E024912/1, BB/F004605/1).as well as the EU ProDaC grant (European Commission project, 6th framework programme, project number LSHG-CT-2006-036814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hubbard, S.J. (2010). Computational Approaches to Peptide Identification via Tandem MS. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-444-9_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-443-2

  • Online ISBN: 978-1-60761-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics