Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicting Retrieval Success Based on Information Use for Writing Tasks

  • Conference paper
  • First Online:
Digital Libraries for Open Knowledge (TPDL 2018)

Abstract

This paper asks to what extent querying, clicking, and text editing behavior can predict the usefulness of the search results retrieved during essay writing. To render the usefulness of a search result directly observable for the first time in this context, we cast the writing task as “essay writing with text reuse,” where text reuse serves as usefulness indicator. Based on 150 essays written by 12 writers using a search engine to find sources for reuse, while their querying, clicking, reuse, and text editing activities were recorded, we build linear regression models for the two indicators (1) number of words reused from clicked search results, and (2) number of times text is pasted, covering 69% (90%) of the variation. The three best predictors from both models cover 91–95% of the explained variation. By demonstrating that straightforward models can predict retrieval success, our study constitutes a first step towards incorporating usefulness signals in retrieval personalization for general writing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://webis.de/data/webis-trc-12.html.

References

  1. Belkin, N., Cole, M., Liu, J.: A model for evaluating interactive information retrieval. In: SIGIR Workshop on the Future of IR Evaluation, 23 July 2009, Boston (2009)

    Google Scholar 

  2. Hersh, W.: Relevance and retrieval evaluation: perspectives from medicine. J. Am. Soc. Inf. Sci. 45(3), 201–206 (1994)

    Article  Google Scholar 

  3. Järvelin, K., et al.: Task-based information interaction evaluation: the viewpoint of program theory. ACM Trans. Inf. Syst. 33(1), 3:1–3:30 (2015)

    Google Scholar 

  4. Cooper, W.S.: On selecting a measure of retrieval effectiveness. JASIST 24(2), 87–100 (1973)

    Article  Google Scholar 

  5. Vakkari, P.: Task based information searching. ARIST 1, 413–464 (2003)

    Google Scholar 

  6. Yilmaz, E., Verma, M., Craswell, N., Radlinski, F., Bailey, P.: Relevance and effort: an analysis of document utility. In: Proceedings of the CIKM 2014, pp. 91–100. ACM (2014)

    Google Scholar 

  7. Kelly, D., Belkin, N.J.: Display time as implicit feedback: understanding task effects. In: Proceedings of the SIGIR 2004, pp. 377–384. ACM (2004)

    Google Scholar 

  8. Liu, J., Belkin, N.J.: Personalizing information retrieval for multi-session tasks: the roles of task stage and task type. In: Proceedings of the SIGIR 2010, pp. 26–33. ACM (2010)

    Google Scholar 

  9. Liu, C., Belkin, N., Cole, M.: Personalization of search results using interaction behaviors in search sessions. In: Proceedings of the SIGIR 2012, pp. 205–214. ACM (2012)

    Google Scholar 

  10. Mao, J., et al.: Understanding and predicting usefulness judgment in web search. In: Proceedings of the SIGIR 2017, pp. 1169–1172. ACM, New York (2017)

    Google Scholar 

  11. Serola, S., Vakkari, P.: The anticipated and assessed contribution of information types in references retrieved for preparing a research proposal. JASIST 56(4), 373–381 (2005)

    Article  Google Scholar 

  12. Ahn, J.W., Brusilovsky, P., He, D., Grady, J., Li, Q.: Personalized web exploration with task models. In: Proceedings of the WWW 2008, pp. 1–10. ACM, New York (2008)

    Google Scholar 

  13. He, D., et al.: An evaluation of adaptive filtering in the context of realistic task-based information exploration. IP & M 44(2), 511–533 (2008)

    Google Scholar 

  14. Sakai, T., Dou, Z.: Summaries, ranked retrieval and sessions: a unified framework for information access evaluation. In: Proceedings of the SIGIR 2013, pp. 473–482. ACM (2013)

    Google Scholar 

  15. Potthast, M., Hagen, M., Völske, M., Stein, B.: Crowdsourcing interaction logs to understand text reuse from the web. In: Proceedings of the ACL 2013, pp. 1212–1221. Association for Computational Linguistics, August 2013

    Google Scholar 

  16. Potthast, M., et al.: ChatNoir: a search engine for the ClueWeb09 corpus. In: Proceedings of the SIGIR 2012, p. 1004. ACM, August 2012

    Google Scholar 

  17. Hagen, M., Potthast, M., Stein, B.: Source retrieval for plagiarism detection from large web corpora: recent approaches. In: CLEF 2015 Evaluation Labs, CLEF and CEUR-WS.org, September 2015

    Google Scholar 

  18. Hagen, M., Potthast, M., Völske, M., Gomoll, J., Stein, B.: How writers search: analyzing the search and writing logs of non-fictional essays. In: Kelly, D., Capra, R., Belkin, N., Teevan, J., Vakkari, P. (eds.) Proceedings of the CHIIR 2016, pp. 193–202. ACM, March 2016

    Google Scholar 

  19. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.: Multivariate Data Analysis. Prentice-Hall, New Jersey (2010)

    Google Scholar 

  20. Hassan, A., Jones, R., Klinkner, K.: Beyond DCG: user behavior as a predictor of a successful search. In: Proceedings of the WSDM 2010, pp. 221–230. ACM (2010)

    Google Scholar 

  21. Gwizdka, J.: Characterizing relevance with eye-tracking measures. In: Proceedings of the 5th Information Interaction in Context Symposium, pp. 58–67. ACM (2014)

    Google Scholar 

  22. Smucker, M., Jethani, C.: Time to judge relevance as an indicator of assessor error. In: Proceedings of the SIGIR 2012, pp. 1153–1154. ACM (2012)

    Google Scholar 

  23. Weigl, D.M., Page, K.R., Organisciak, P., Downie, J.S.: Information-seeking in large-scale digital libraries: strategies for scholarly workset creation. In: Proceedings of the JCDL 2017, pp. 1–4, June 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Völske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vakkari, P., Völske, M., Potthast, M., Hagen, M., Stein, B. (2018). Predicting Retrieval Success Based on Information Use for Writing Tasks. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J. (eds) Digital Libraries for Open Knowledge. TPDL 2018. Lecture Notes in Computer Science(), vol 11057. Springer, Cham. https://doi.org/10.1007/978-3-030-00066-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00066-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00065-3

  • Online ISBN: 978-3-030-00066-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics