Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Hybrid Method for Acoustic Analysis of the Vocal Tract During Vowel Production

  • Conference paper
  • First Online:
Studies on Speech Production (ISSP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10733))

Included in the following conference series:

Abstract

A hybrid method for vocal-tract acoustic simulation is proposed to handle the complex and moving geometries during speech production by combining the finite-difference time-domain (FDTD) method and the immersed boundary method (IBM). In this method, two distinct discrete point systems are employed for discretization. The fluid field is discretized by regular Eulerian grid points, while the wall boundary is represented by a series of Lagrangian points. A direct body force is calculated on the Lagrangian points and then interpolated to the neighboring Eulerian points. To validate the proposed hybrid method, a 2D vocal tract model was set by extracting area function from MRI data obtained for the Mandarin vowel /a/. By simulating acoustic wave in this model, the synthesized vowel was analyzed and the obtained formant frequencies were compared to those of real speech sounds. It is found that the mean absolute error of formant frequencies was 8.17% and better than the result in Literature. To show the ability of the hybrid method for solving acoustic problems with moving geometry, a pseudo moving boundary problem was designed and the results agree well with the acoustic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoyama, K., Matsuzaki, H., Miki, N., et al.: Finite-element method analysis of a three-dimensional vocal tract model with branches. J. Acoust. Soc. Am. 100(4), 2657–2658 (1996)

    Article  Google Scholar 

  2. Kagawa, Y., Shimoyama, R., Yamabuchi, T., et al.: Boundary element models of the vocal tract and radiation field and their response characteristics. J. Sound Vib. 157(3), 385–403 (1992)

    Article  Google Scholar 

  3. Takemoto, H., Mokhtari, P., Kitamura, T.: Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method. J. Acoust. Soc. Am. 128(6), 3724–3738 (2010)

    Article  Google Scholar 

  4. Wang, Y., Wang, H., Wei, J., et al.: Mandarin vowel synthesis based on 2D and 3D vocal tract model by finite-difference time-domain method. In: Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Hollywood, CA, pp. 1–4 (2012)

    Google Scholar 

  5. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MathSciNet  Google Scholar 

  6. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    Article  MathSciNet  Google Scholar 

  7. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  8. Deng, J., Shao, X.M., Ren, A.L.: A new modification of the immersed-boundary method for simulating flows with complex moving boundaries. Int. J. Numer. Methods Fluids 52(11), 1195–1213 (2006)

    Article  Google Scholar 

  9. Pan, D., Deng, J., Shao, X.M., et al.: On the propulsive performance of tandem flapping wings with a modified immersed boundary method. Int. J. Comput. Methods 13(5), 1–15 (2016). 1650025

    Article  MathSciNet  Google Scholar 

  10. Wei, J., Guan, W., Hou, Q., et al.: A new model for acoustic wave propagation and scattering in the vocal tract. In: 17th Annual Conference of the International Speech Communication Association, INTERSPEECH, San Francisco, CA, pp. 3574–3578 (2016)

    Google Scholar 

  11. Yee, K.S.: Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  Google Scholar 

  12. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  13. Yuan, X., Borup, D., Wiskin, J.W., et al.: Formulation and validation of Berenger’s PML absorbing boundary for the FDTD simulation of acoustic scattering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 816–822 (2002)

    Article  Google Scholar 

  14. Takemoto, H., Kitamura, T., Nishimoto, H., et al.: A method of tooth superimposition on MRI data for accurate measurement of vocal tract shape and dimensions. Acoust. Sci. Technol. 25(6), 468–474 (2004)

    Article  Google Scholar 

  15. Takemoto, H., Honda, K., Masaki, S., et al.: Measurement of temporal changes in vocal tract area function from 3D cine-MRI data. J. Acoust. Soc. Am. 119(2), 1037–1049 (2006)

    Article  Google Scholar 

  16. Wang, G., Kitamura, T., Lu, X.: MRI-based study on morphological and acoustic properties of Mandarin sustained vowels. J. Signal Process. 12, 311–314 (2008)

    Google Scholar 

Download references

Acknowledgements

The research is supported partially by the National Basic Research Program of China (No. 2013CB329303), National Natural Science Foundation of China (No. 61233009 and No. 51478305) and JSPS KAKENHI Grant (16K00297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingzhi Hou or Jianwu Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, F., Hou, Q., Pan, D., Wei, J., Dang, J. (2018). A Hybrid Method for Acoustic Analysis of the Vocal Tract During Vowel Production. In: Fang, Q., Dang, J., Perrier, P., Wei, J., Wang, L., Yan, N. (eds) Studies on Speech Production. ISSP 2017. Lecture Notes in Computer Science(), vol 10733. Springer, Cham. https://doi.org/10.1007/978-3-030-00126-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00126-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00125-4

  • Online ISBN: 978-3-030-00126-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics