Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fuzzy Hit-or-Miss Transform Using Uninorms

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2018)

Abstract

The Hit-or-Miss transform (HMT) is a morphological operator which has been successfully used to identify shapes and patterns satisfying certain geometric restrictions in an image. Recently, a novel HMT operator, called the fuzzy morphological HMT, was introduced within the framework of the fuzzy mathematical morphology based on fuzzy conjunctions and fuzzy implication functions. Taking into account that the particular case of considering a t-norm as fuzzy conjunction and its residual implication as fuzzy implication functions has proved its potential in several applications, in this paper, the case when residual implications derived from uninorms and a general fuzzy conjunction, possibly a t-norm or the same uninorm, is deeply analysed. In particular, some theoretical results related to properties desirable for the applications are proved. Finally, some experimental results are presented showing the potential of this choice of operator to detect shapes and patterns in images.

This paper has been partially supported by the Spanish Grant TIN2016-75404-P, AEI/FEDER, UE. P. Bibiloni also benefited from the fellowship FPI/1645/2014 of the Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears under an operational program co-financed by the European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aptoula, E., Lefèvre, S., Ronse, C.: A hit-or-miss transform for multivariate images. Pattern Recognit. Lett. 30(8), 760–764 (2009)

    Article  Google Scholar 

  2. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69082-5

    Book  MATH  Google Scholar 

  3. Barat, C., Ducottet, C., Jourlin, M.: Pattern matching using morphological probing. In: Proceedings of the International Conference on Image Processing, ICIP 2003, vol. 1, pp. 369–372 (2003)

    Google Scholar 

  4. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  5. Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28, 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  6. De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic. Statistics, and Neural Network Approach, pp. 53–68. Kluwer Academic Publishers, Norwell (1997)

    Google Scholar 

  7. De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Comput. 3, 89–100 (1999)

    Article  Google Scholar 

  8. De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphologies part I: basics concepts. Int. J. Gen. Syst. 23, 155–171 (1995)

    Article  Google Scholar 

  9. De Baets, B., Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Proceedings of the Seventh IFSA World Congress, Prague, pp. 215–220 (1997)

    Google Scholar 

  10. Deng, T.-Q.: Fuzzy logic and mathematical morphology. Technical report. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands, October 2000

    Google Scholar 

  11. González, M., Ruiz-Aguilera, D., Torrens, J.: Algebraic properties of fuzzy morphological operators based on uninorms. In: Artificial Intelligence Research and Development. Frontiers in Artificial Intelligence and Applications, vol. 100, pp. 27–38. IOS Press (2003)

    Google Scholar 

  12. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)

    Article  Google Scholar 

  13. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A fuzzy morphological hit-or-miss transform for grey-level images. Fuzzy Sets Syst. 286(C), 30–65 (2016)

    Article  MathSciNet  Google Scholar 

  14. González-Hidalgo, M., Mir-Torres, A.: Noise reduction using alternate filters generated by fuzzy mathematical operators using uninorms (\(\phi \)MM-U morphology). In: Burillo, P. (ed.) EUROFUSE Workshop 2009. Preference Modelling and Decision Analysis, pp. 233–238. Public University of Navarra, Pamplona (2009)

    Google Scholar 

  15. González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Image analysis applications of morphological operators based on uninorms. In: Carvalho, P., et al. (eds.) Proceedings of the IFSA-EUSFLAT 2009 Conference, Lisbon, Portugal, pp. 630–635 (2009)

    Google Scholar 

  16. Heijmaans, H.: Morphological Image Operators. Academic Press, Boston (1994)

    Google Scholar 

  17. Khosravi, M., Schafer, R.W.: Template matching based on a grayscale hit-or-miss transform. IEEE Trans. Image Process. 5(6), 1060–1066 (1996)

    Article  Google Scholar 

  18. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, London (2000)

    Book  Google Scholar 

  19. Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)

    Article  MathSciNet  Google Scholar 

  20. Matheron, G.: Random Sets and Integral Geometry. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  21. Nachtegael, M., Kerre, E.: Classical and fuzzy approaches towards mathematical morphology, Chap. 1. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. Studies in Fuzziness and Soft Computing, vol. 52, pp. 3–57. Physica-Verlag, New York (2000)

    Chapter  Google Scholar 

  22. Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms-part I: unified theory. Pattern Recognit. 40, 635–647 (2007)

    Article  Google Scholar 

  23. Ouyang, Y.: On fuzzy implications determined by aggregation operators. Inf. Sci. 193, 153–162 (2012)

    Article  MathSciNet  Google Scholar 

  24. Perret, B., Lefèvre, S., Collet, C.: A robust hit-or-miss transform for template matching applied to very noisy astronomical images. Pattern Recognit. 42, 2470–24890 (2009)

    Article  Google Scholar 

  25. Popov, A.T.: General approach for fuzzy mathematical morphology. In: Proceedings of 8th International Symposium on Mathematical Morphology, ISMM, pp. 39–48 (2007)

    Google Scholar 

  26. Raducanu, B., Grana, M.: A grayscale hit-or-miss transform based on level sets. In: Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada, pp. 931–933 (2000)

    Google Scholar 

  27. Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Ruiz-Aguilera, D., Torrens, J., De Baets, B., Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 425–434. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_44

    Chapter  Google Scholar 

  29. Schaefer, R., Casasent, D.: Nonlinear optical hit–miss transform for detection. Appl. Opt. 34(20), 3869–3882 (1995)

    Article  Google Scholar 

  30. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    MATH  Google Scholar 

  31. Sinha, D., Sinha, P., Douherty, E., Batman, S.: Design and analysis of fuzzy morphological algorithms for image processing. IEEE Trans. Fuzzy Syst. 5(4), 570–584 (1997)

    Article  Google Scholar 

  32. Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05088-0

    Book  MATH  Google Scholar 

  33. Velasco-Forero, S., Angulo, J.: Hit-or-miss transform in multivariate images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 452–463. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17688-3_42

    Chapter  Google Scholar 

  34. Weber, J., Lefèvre, S.: Spatial and spectral morphological template matching. Image Vis. Comput. 30, 934–945 (2012)

    Article  Google Scholar 

  35. Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastia Massanet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bibiloni, P., González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D. (2018). Fuzzy Hit-or-Miss Transform Using Uninorms. In: Torra, V., Narukawa, Y., Aguiló, I., González-Hidalgo, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2018. Lecture Notes in Computer Science(), vol 11144. Springer, Cham. https://doi.org/10.1007/978-3-030-00202-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00202-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00201-5

  • Online ISBN: 978-3-030-00202-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics