Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Efficiency of ZMAC-Type Modes

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11124))

Included in the following conference series:

Abstract

In this paper, we study the efficiency of \(\mathsf {ZMAC}\)-type message authentication codes (MACs). \(\mathsf {ZMAC}\) was proposed by Iwata et al. (CRYPTO 2017) and is a highly efficient and highly secure MAC based on tweakable blockcipher (TBC). \(\mathsf {ZMAC}\) achieves the so-called beyond-birthday-bound security: security up to \(2^{\min \{b, (b+t)/2\}}\) TBC calls, using a TBC with the input-block space \(\{0,1\}^b\) and the tweak space \(\mathcal {TW}= \mathcal {I}\times \{0,1\}^t\) where \(\mathcal {I}\) is a set with \(|\mathcal {I}| = 5\) and is used for tweak separations. In the hash function, the \(b\)-bit and \(t\)-bit spaces are used to take message blocks (in previous MACs, only the \(b\)-bit input-block space is used). In the finalization function, a TBC is called twice, and these spaces are not used. List and Nandi (ToSC 2017, Issue 4) proposed \(\mathsf {ZMAC}^+\), a variant of \(\mathsf {ZMAC}\), where one TBC call is removed from the finalization function. Although both the \(b\)-bit and \(t\)-bit spaces in the hash function are used to take message blocks, those in the finalization function are not used. That rises the following question with the aim of improving the efficiency: can these spaces be used while retaining the same level of security as \(\mathsf {ZMAC}\)? In this paper, we consider the following three \(\mathsf {ZMAC}\)-type MACs.

  • \(\mathsf {ZMACb}\): only the \(b\)-bit space is used.

  • \(\mathsf {ZMACt}\): only the \(t\)-bit space is used.

  • \(\mathsf {ZMACbt}\): both the \(b\)-bit and \(t\)-bit spaces are used.

We show that none of the above MACs achieve the same level of security as \(\mathsf {ZMAC}(^+)\). Hence, \(\mathsf {ZMAC}^+\) is the most efficient MAC in the \(\mathsf {ZMAC}\)-type ones with \(2^{\min \{b, (b+t)/2\}}\)-security.

We next consider whether the tweak separations can be removed (i.e., \(\mathcal {I}\) can be used to take a message block), with the aim of improving the efficiency of \(\mathsf {ZMAC}^+\). Iwata et al. mentioned that the tweak separations can be removed by using distinct field multiplications such as multiplications by 3 and 7, but these render the implementation much more complex (note that in \(\mathsf {ZMAC}\), field multiplications by 2 are used). For this problem, we show that the tweak separations can be removed without the field multiplications except for the multiplications by 2, that is, all spaces \(\mathcal {TW}\) and \(\{0,1\}^b\) in the hash function can be used to take message blocks without such complex implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Usually, the tweak separations are realized by using one byte in the tweak space of each TBC call. In this case, there is no impact on the efficiency from the modification.

  2. 2.

    \(\mathsf {ZMAC}^+\) can produce variable-length outputs, where each \(b\)-bit output is defined by one TBC call. Using \(\mathsf {ZMAC}^+\) as a MAC, the \(b\)-bit output length is enough to ensure the \(2^{\min \{b,(b+t)/2\}}\)-security, where a TBC is called once. In [12], the security bound is improved to \(O(q/2^b+ q\sigma /2^{b+\min \{b,t\}})\).

  3. 3.

    In [6] (Lemma 1), the TPRP-security of \(\mathsf {XT}\) is considered. Since a TRP with a constant input block, i.e., the input block is fixed to some constant, behaves like a random function, the PRF-security of \(\mathsf {XT}_0\) is obtained from the TPRP-security of \(\mathsf {XT}\).

References

  1. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5

    Chapter  Google Scholar 

  2. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_25

    Chapter  Google Scholar 

  3. Cogliati, B., Lee, J., Seurin, Y.: New constructions of MACs from (tweakable) block ciphers. IACR Trans. Symmetric Cryptol. 2017(2), 27–58 (2017)

    Google Scholar 

  4. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of PMAC\(\_\)Plus. IACR Trans. Symmetric Cryptol. 2017(4), 268–305 (2017)

    Google Scholar 

  5. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_11

    Chapter  Google Scholar 

  6. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweakable block cipher mode for highly secure message authentication. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 34–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_2. IACR Cryptology ePrint Archive 2017, 535 (2017)

    Chapter  Google Scholar 

  7. Iwata, T., Seurin, Y.: Reconsidering the security bound of AES-GCM-SIV. IACR Trans. Symmetric Cryptol. 2017(4), 240–267 (2017)

    Google Scholar 

  8. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15

    Chapter  Google Scholar 

  9. JTC1: ISO/IEC 9797–1:1999 Information technology – Security techniques – Message Authentication Codes (MACs)–Part 1: Mechanisms using a block cipher (1999)

    Google Scholar 

  10. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3

    Chapter  Google Scholar 

  11. List, E., Nandi, M.: Revisiting full-PRF-secure PMAC and using it for beyond-birthday authenticated encryption. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 258–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_15

    Chapter  Google Scholar 

  12. List, E., Nandi, M.: ZMAC+ - an efficient variable-output-length variant of ZMAC. IACR Trans. Symmetric Cryptol. 2017(4), 306–325 (2017)

    Google Scholar 

  13. Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 428–448. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_21

    Chapter  Google Scholar 

  14. Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77–93. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_5

    Chapter  Google Scholar 

  15. Minematsu, K., Iwata, T.: Cryptanalysis of PMACx, PMAC2x, and SIVx. IACR Trans. Symmetric Cryptol. 2017(2), 162–176 (2017)

    Google Scholar 

  16. Naito, Y.: Full PRF-secure message authentication code based on tweakable block cipher. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 167–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_9

    Chapter  Google Scholar 

  17. Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 446–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_16

    Chapter  Google Scholar 

  18. Naito, Y.: Improved security bound of LightMAC\(\_\)Plus and its single-key variant. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 300–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_16

    Chapter  Google Scholar 

  19. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21

    Chapter  Google Scholar 

  20. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_2

    Chapter  Google Scholar 

  21. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_25

    Chapter  Google Scholar 

  22. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_34

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Naito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naito, Y. (2018). On the Efficiency of ZMAC-Type Modes. In: Camenisch, J., Papadimitratos, P. (eds) Cryptology and Network Security. CANS 2018. Lecture Notes in Computer Science(), vol 11124. Springer, Cham. https://doi.org/10.1007/978-3-030-00434-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00434-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00433-0

  • Online ISBN: 978-3-030-00434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics