Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Does the ACO\(\mathbb {_R}\) Algorithm Benefit from the Use of Crossover?

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Abstract

The ACO\(\mathbb {_R}\) algorithm is based on the Ant Colony Optimization (ACO) metaphor, and a crossover operator does not naturally within this metaphor. In spite of this, we investigate in this paper whether the performance of ACO\(\mathbb {_R}\) would benefit from the deployment, with a fixed probability, of a crossover operator. Our extensive experimental evaluation uses two applications: (1) training feedforward neural networks for classification using 65 benchmark datasets from the UCI repository; and (2) optimizing several popular synthetic benchmark continuous-domain functions with the number of dimensions varying from 10 up to 10,000. Our experimental results confirm that the use of crossover does improve performance on both applications to a statistically significant extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelbar, A.M., Salama, K.M.: A gradient-guided ACO algorithm for neural network learning. In: Proceedings IEEE Swarm Intelligence Symposium (SIS-2015), pp. 1133–1140 (2015)

    Google Scholar 

  2. Abdelbar, A.M., Salama, K.M.: An extension of the ACO\(_{\mathbb{R}}\) algorithm with time-decaying search width, with application to neural network training. In: Proceedings IEEE Congress on Evolutionary Computation (CEC-2016), pp. 2360–2366 (2016)

    Google Scholar 

  3. Abdelbar, A.M., Salama, K.M.: Solution recombination in an indicator-based many-objective ant colony optimizer for continuous search spaces. In: Proceedings IEEE Swarm Intelligence Symposium (SIS-2017), pp. 1–8 (2017)

    Google Scholar 

  4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, Y. (eds.) Handbook of Metaheuristics, pp. 227–263. Springer, New York, NY, USA (2010). https://doi.org/10.1007/978-1-4419-1665-5_8

    Chapter  Google Scholar 

  6. Falcón-Cardona, J.G., Coello Coello, C.A.: A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intell. 11, 71–100 (2017)

    Article  Google Scholar 

  7. Kalinli, A., Sarikoc, F.: A parallel ant colony optimization algorithm based on crossover operation. In: Siarry, P., Michalewicz, Z. (eds.) Advances in Metaheuristics for Hard Optimization, pp. 87–110. Springer, Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-72960-0_5

    Chapter  MATH  Google Scholar 

  8. Liao, T., Socha, K., Montes de Oca, M., Stützle, T., Dorigo, M.: Ant colony optimization for mixed-variable optimization problems. IEEE Trans. Evol. Comput. 18(4), 503–518 (2014)

    Article  Google Scholar 

  9. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  10. Salama, K.M., Abdelbar, A.M.: Extensions to the Ant-Miner classification rule discovery algorithm. In: Dorigo, M. (ed.) ANTS 2010. LNCS, vol. 6234, pp. 167–178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_15

    Chapter  Google Scholar 

  11. Salama, K.M., Abdelbar, A.M.: Exploring different rule quality evaluation functions in ACO-based classification algorithms. In: IEEE Swarm Intelligence Symposium, pp. 1–8 (2011)

    Google Scholar 

  12. Salama, K.M., Abdelbar, A.M.: Learning neural network structures with ant colony algorithms. Swarm Intell. 9(4), 229–265 (2015)

    Article  Google Scholar 

  13. Salama, K.M., Abdelbar, A.M.: Instance-based classification with ant colony optimization. Intell. Data Anal. 21(4), 913–944 (2017)

    Article  Google Scholar 

  14. Salama, K.M., Abdelbar, A.M.: Learning cluster-based classification systems with ant colony optimization algorithms. Swarm Intell. 11(2–3), 211–242 (2017)

    Article  Google Scholar 

  15. Salama, K.M., Abdelbar, A.M., Anwar, I.: Data reduction for classification with ant colony algorithms. Intell. Data Anal. 20(5), 1021–1059 (2016)

    Article  Google Scholar 

  16. Salama, K.M., Abdelbar, A.M., Freitas, A.: Multiple pheromone types and other extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intell. 5(3–4), 149–182 (2011)

    Article  Google Scholar 

  17. Salama, K.M., Abdelbar, A.M., Otero, F., Freitas, A.: Utilizing multiple pheromones in an ant-based algorithm for continuous-attribute classification rule discovery. Appl. Soft Comput. 13(1), 667–675 (2013)

    Article  Google Scholar 

  18. Socha, K., Blum, C.: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput. Appl. 16, 235–247 (2007)

    Article  Google Scholar 

  19. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)

    Article  MathSciNet  Google Scholar 

  20. Tsutsui, S.: Ant colony optimisation for continuous domains with aggregation pheromones metaphor. In: Proceedings International Conference on Recent Advances in Soft Computing (RASC-2004), pp. 207–212 (2004)

    Google Scholar 

Download references

Acknowledgments

Partial support of a grant from the Brandon University Research Council (BURC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Abdelbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdelbar, A.M., Salama, K.M. (2018). Does the ACO\(\mathbb {_R}\) Algorithm Benefit from the Use of Crossover?. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics