Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reconstructing Gene Networks of Forest Trees from Gene Expression Data: Toward Higher-Resolution Approaches

  • Conference paper
  • First Online:
ICT Innovations 2018. Engineering and Life Sciences (ICT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 940))

Included in the following conference series:

Abstract

In two of our recent systems biology studies of forest trees we reconstructed gene networks active in wood tissue development for an undomesticated tree genus, Populus. In the first study, we used time series data to determine gene expression dynamics underlying wood formation in response to gravitational stimulus. In the second study, we integrated data from newly generated and publicly available transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments, to identify relationships among genes expressed during wood formation. We demonstrated that these approaches can be used for dissecting complex developmental responses in trees, and can reveal gene clusters and mechanisms influencing poorly understood developmental processes. Combining orthogonal approaches can yield better resolved gene networks, but the resulting network modules may contain large numbers of genes. This limitation reflects the difficulty in creating a variety of experimental conditions that can reveal expression and functional differences among genes within a module, thus imposing limits on the resolving power of network models in practice. To resolve networks at a finer level we are now adding a complementary approach to our work: using cross-species gene network inference. In this approach, transcriptome assemblies of two or more species are considered together to identify expression responses common to all species and also responses that are species specific. To that end here we present a new tool, fastOC, for identifying gene co-expression networks across multiple species. We provide initial evidence that the tool works effectively in calculating co-expression modules with minimal computing requirements, thus making cross-species gene network comparison practical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101 (2004)

    Article  Google Scholar 

  2. Bergman, A., Siegal, M.L.: Evolutionary capacitance as a general feature of complex gene networks. Nature 424(6948), 549 (2003)

    Article  Google Scholar 

  3. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways. Science 283(5400), 381–387 (1999)

    Article  Google Scholar 

  4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  5. Brady, S.M., et al.: A stele-enriched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol. 7(1), 459 (2011)

    Article  Google Scholar 

  6. Ciliberti, S., Martin, O.C., Wagner, A.: Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol. 3(2), e15 (2007)

    Article  MathSciNet  Google Scholar 

  7. Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32(Suppl\_1), D258–D261 (2004)

    Google Scholar 

  8. Djebali, S., et al.: Landscape of transcription in human cells. Nature 489(7414), 101 (2012)

    Article  Google Scholar 

  9. Ellis, T., Wang, X., Collins, J.J.: Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27(5), 465 (2009)

    Article  Google Scholar 

  10. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)

    Article  Google Scholar 

  11. Gerstein, M.B., et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414), 91 (2012)

    Article  Google Scholar 

  12. Gerttula, S., et al.: Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27, 2800–2813 (2015). pp. tpc-15

    Google Scholar 

  13. Han, J.D.J., et al.: Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995), 88 (2004)

    Article  Google Scholar 

  14. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS, vol. 4955, pp. 246–256. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78839-3_21

    Chapter  Google Scholar 

  15. Kellis, M., et al.: Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. 111(17), 6131–6138 (2014)

    Article  Google Scholar 

  16. Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24(5), 719–720 (2007)

    Article  Google Scholar 

  17. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)

    Article  Google Scholar 

  18. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)

    Article  Google Scholar 

  19. Long, T.A., Brady, S.M., Benfey, P.N.: Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol. 24, 81–103 (2008)

    Article  Google Scholar 

  20. Matasci, N., et al.: Data access for the 1,000 plants (1KP) project. GigaScience 3(1), 17 (2014)

    Article  Google Scholar 

  21. Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461(7261), 218 (2009)

    Article  Google Scholar 

  22. Serin, E.A., Nijveen, H., Hilhorst, H.W., Ligterink, W.: Learning from co-expression networks: possibilities and challenges. Front. Plant Sci. 7, 444 (2016)

    Article  Google Scholar 

  23. Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58(2), 221–227 (2007)

    Article  Google Scholar 

  24. Taylor-Teeples, M., et al.: An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536), 571 (2015)

    Article  Google Scholar 

  25. Usadel, B., et al.: Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009)

    Article  Google Scholar 

  26. Von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406(6792), 188 (2000)

    Article  Google Scholar 

  27. Yan, K.K., Wang, D., Rozowsky, J., Zheng, H., Cheng, C., Gerstein, M.: OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biol. 15(8), R100 (2014)

    Article  Google Scholar 

  28. Zinkgraf, M., Gerttula, S., Zhao, S., Filkov, V., Groover, A.: Transcriptional and temporal response of Populus stems to gravi-stimulation. J. Integr. Plant Biol. (2018). https://doi.org/10.1111/jipb.12645

  29. Zinkgraf, M., Liu, L., Groover, A., Filkov, V.: Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytol. 214(4), 1464–1478 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Filkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zinkgraf, M., Groover, A., Filkov, V. (2018). Reconstructing Gene Networks of Forest Trees from Gene Expression Data: Toward Higher-Resolution Approaches. In: Kalajdziski, S., Ackovska, N. (eds) ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. Communications in Computer and Information Science, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-00825-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00825-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00824-6

  • Online ISBN: 978-3-030-00825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics