Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Prostate Cancer Classification on VERDICT DW-MRI Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2018)

Abstract

Currently, non-invasive imaging techniques such as magnetic resonance imaging (MRI) are emerging as powerful diagnostic tools for prostate cancer (PCa) characterization. This paper focuses on automated PCa classification on VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors) diffusion weighted (DW)-MRI, which is a non-invasive microstructural imaging technique that comprises a rich imaging protocol and a tissue computational model to map in vivo histological indices. The contribution of the paper is two fold. Firstly, we investigate the potential of automated, model-free PCa classification on raw VERDICT DW-MRI. Secondly, we attempt to adapt and evaluate novel fully convolutional neural networks (FCNNs) for PCa characterization. We present two neural network architectures that adapt U-Net and ResNet-18 to the PCa classification problem. We train the networks end-to-end on DW-MRI data and evaluate the diagnostic performance employing a 10-fold cross validation approach using data acquired from 103 patients. ResNet-18 outperforms U-Net with an average AUC of \(86.7\%\). Our results show promise for the utilization of raw VERDICT DW-MRI data and FCNNs for automating the PCa diagnostic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Torre, L.A., et al.: Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015)

    Article  Google Scholar 

  2. Kiraly, A.P., et al.: Deep convolutional encoder-decoders for prostate cancer detection and classification. In: MICCAI (2017)

    Google Scholar 

  3. Mehrtash, A., et al.: Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. Proc. SPIE Int. Soc. Opt. Eng. (2017)

    Google Scholar 

  4. Ahmed, H.U., et al.: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017)

    Article  Google Scholar 

  5. Isebaert, S., et al.: Multiparametric MRI for prostate cancer localization in correlation to wholemount histopathology. J. Magn. Reson. Imaging 37, 1392–1401 (2013)

    Article  Google Scholar 

  6. Metzger, G.J., et al.: Detection of prostate cancer: Quantitative multiparametric MR imaging models developed using registered correlative histopathology. Radiology 279, 805–816 (2016)

    Article  Google Scholar 

  7. Bourne, R., et al.: Limitations and prospects for diffusion-weighted MRI of the prostate. Diagnostics 6, 21 (2016)

    Article  Google Scholar 

  8. Panagiotaki, E., et al.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74, 1902–1912 (2014)

    Article  Google Scholar 

  9. Panagiotaki, E., et al.: Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging. Invest. Radiol. 50, 218–227 (2015)

    Article  Google Scholar 

  10. Panagiotaki, E., et al.: Optimised VERDICT MRI protocol for prostate cancer characterisation. In: ISMRM (2015)

    Google Scholar 

  11. Ourselin, S., et al.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19, 25–31 (2001)

    Article  Google Scholar 

  12. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  13. Ronneberger, O., et al.: U-Net: Convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  14. Badrinarayanan, V.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intel. 39, 2481–2495 (2017)

    Article  Google Scholar 

  15. Chen, L.C., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. ArXiv (2018)

    Google Scholar 

  16. Ioffe, S., et al.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  17. Nair, V., et al.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  18. He, K., et al.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  19. Paszke, A., et al.: Automatic differentiation in pytorch. In: Autodiff Workshop, NIPS (2017)

    Google Scholar 

  20. Litjens, G., et al.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33, 1083–1092 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by EPSRC grand EP/N021967/1. The Titan Xp used for this research was donated by the NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Chiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiou, E., Giganti, F., Bonet-Carne, E., Punwani, S., Kokkinos, I., Panagiotaki, E. (2018). Prostate Cancer Classification on VERDICT DW-MRI Using Convolutional Neural Networks. In: Shi, Y., Suk, HI., Liu, M. (eds) Machine Learning in Medical Imaging. MLMI 2018. Lecture Notes in Computer Science(), vol 11046. Springer, Cham. https://doi.org/10.1007/978-3-030-00919-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00919-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00918-2

  • Online ISBN: 978-3-030-00919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics