Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Text-Based Detection and Understanding of Changes in Mental Health

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11186))

Included in the following conference series:

  • 1434 Accesses

Abstract

Previous work has investigated the identification of mental health issues in social media users, yet the way that users’ mental states and related behavior change over time remains relatively understudied. This paper focuses on online mental health communities and studies how users’ contributions to these communities change over one year. We define a metric called the Mental Health Contribution Index (MHCI), which we use to measure the degree to which users’ contributions to mental health topics change over a one-year period. In this work, we study the relationship between MHCI scores and the online expression of mental health symptoms by extracting relevant linguistic features from user-generated content and conducting statistical analyses. Additionally, we build a classifier to predict whether or not a user’s contributions to mental health subreddits will increase or decrease. Finally, we employ propensity score matching to identify factors that correlate with an increase or a decrease in mental health forum contributions. Our work provides some of the first insights into detecting and understanding social media users’ changes in mental health states over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.reddit.com.

  2. 2.

    https://praw.readthedocs.io/en/latest/.

References

  1. Abdel-Khalek, A.M.: Can somatic symptoms predict depression? Soc. Behav. Pers. Int. J. 32(7), 657–666 (2004)

    Article  Google Scholar 

  2. Amir, S., Coppersmith, G., Carvalho, P., et al.: Quantifying mental health from social media with neural user embeddings. In: Proceedings of Machine Learning for Healthcare 2017 (2017)

    Google Scholar 

  3. Benton, A., Mitchell, M., Harman, C.: Multitask learning for mental health conditions with limited social media data. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (2017)

    Google Scholar 

  4. Benton, A., Coppersmith, G., Dredze, M.: Ethical research protocols for social media health research. In: Proceedings of the First Workshop on Ethics in Natural Language Processing (2017)

    Google Scholar 

  5. Bijl, R., De Graaf, R., et al.: The prevalence of treated and untreated mental disorders in five countries. Health Aff. (Millwood) 22, 122–133 (2003)

    Article  Google Scholar 

  6. Bloom, D., et al.: The global economic burden of non-communicable diseases. In: Geneva: World Economic Forum, Geneva (2011)

    Google Scholar 

  7. Blundell, R., et al.: Alternative approaches to evaluation in empirical microeconomics. Port. Econ. J. 1, 91–115 (2002)

    Google Scholar 

  8. Boals, A., Klein, K.: Word use in emotional narratives about failed romantic relationships and subsequent mental health. J. Lang. Soc. Psychol. 24, 252–268 (2005)

    Article  Google Scholar 

  9. Caliendo, M., Kopeinig, S.: Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22(1), 31–72 (2008)

    Article  Google Scholar 

  10. Caliendo, M., et al.: The microeconometric estimation of treatment effects-an overview. Working Paper, J.W. Goethe University of Frankfurt (2005)

    Google Scholar 

  11. Chancellor, S., Lin, Z., Goodman, E.L., Zerwas, S., De Choudhury, M.: Quantifying and predicting mental illness severity in online pro-eating disorder communities. In: Proceedings of The 19th ACM Conference on Computer-Supported Cooperative Work and Social Computing (2016)

    Google Scholar 

  12. Coppersmith, G., Dredze, M., Harman, C., Hollingshead, K.: From ADHD to SAD: analyzing the language of mental health on Twitter through self-reported diagnoses. In: Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality (2015)

    Google Scholar 

  13. Coppersmith, G., Harman, C., Dredze, M.: Measuring post traumatic stress disorder in Twitter. In: Proceedings of the 8th International AAAI Conference on Weblogs and Social Media (ICWSM 2014) (2014)

    Google Scholar 

  14. Coppersmith, G., Dredze, M., Harman, C.: Quantifying mental health signals in Twitter. In: ACL Workshop on Computational Linguistics and Clinical Psychology (2014)

    Google Scholar 

  15. Corrigan, P.: How stigma interferes with mental health care. Am. Psychol. 59(7), 614–625 (2004)

    Article  Google Scholar 

  16. Coste, J., Pouchot, J.: A grey zone for quantitative diagnostic and screening tests. Int. J. Epidemiol. 32(2), 304–13 (2003)

    Article  Google Scholar 

  17. De Choudhury, M., Counts, S., Horvitz, E.: Predicting postpartum changes in emotion and behavior via social media. In: Proceedings of the 2013 ACM Annual Conference on Human Factors in Computing Systems (2013)

    Google Scholar 

  18. De Choudhury, M., Counts, S., Horvitz, E., Hoff, A.: Characterizing and predicting postpartum depression from Facebook data. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work and Social Computing (2014)

    Google Scholar 

  19. De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: AAAI Conference on Weblogs and Social Media (2013)

    Google Scholar 

  20. De Choudhury, M., Kiciman, E.: The language of social support in social media and its effect on suicidal ideation risk. In: Proceedings of the 11th International AAAI Conference on Web and Social Media (ICWSM 2017) (2017)

    Google Scholar 

  21. De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., Kumar, M.: Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, California, USA, 07–12 May 2016 (2016)

    Google Scholar 

  22. De Choudury, M., De, S.: Mental health discourse on reddit: self-disclosure, social support, and anonymity. In: Proceedings of the 8th International AAAI Conference on Weblogs and Social Media (ICWSM 2014), Ann Arbor, MI, 2–4 June 2014 (2014)

    Google Scholar 

  23. Demyttenaere, K., Bruffaerts, R., Posada-Villa, J., et al.: Prevalence, severity, and unmet need for treatment of mental disorders in the world health organization world mental health surveys. J. Am. Med. Assoc. JAMA 291(21), 2581–2590 (2004)

    Google Scholar 

  24. Ernala, S.K., Rizvi, A.F., et al.: Linguistic markers indicating therapeutic outcomes of social media disclosures of schizophrenia. In: Proceedings of the ACM Human-Computer Interaction, CSCW Online First (2018)

    Google Scholar 

  25. Ernala, S.K., Birnbaum, M., Rizvi, A., Kane, J., De Choudhury, M.: Characterizing audience engagement and assessing its impact on social media disclosures of mental illnesses. In: Proceedings of the 12th International AAAI Conference on Web and Social Media (2018)

    Google Scholar 

  26. Etkin, A., Wager, T.D.: Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164(10), 1476–1488 (2007)

    Article  Google Scholar 

  27. Field, T.A., Beeson, E., Jones, L.: The new ABCs: a practitioner’s guide to neuroscience-informed cognitive-behavior therapy. J. Ment. Health Couns. 37(3), 206220 (2015)

    Google Scholar 

  28. Goffman, E.: Stigma: Notes on the Management of Spoiled Identity. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  29. Houghton, D., Joinson, A.: Linguistic markers of secrets and sensitive self-disclosure in Twitter. In: 2012 45th Hawaii International Conference on System Sciences (HICSS), pp. 3480–3489 (2012)

    Google Scholar 

  30. Hovy, D., Spruit, S.L.: The social impact of natural language processing. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (2016)

    Google Scholar 

  31. Johnson, G., Ambrose, P.: Neo-tribes: the power and potential of online communities in health care. Commun. ACM 49(1), 107–113 (2006)

    Article  Google Scholar 

  32. Kessler, R., Price, R.: Primary prevention of secondary disorders: a proposal and agenda. Am. J. Community Psychol. 21(5), 607–633 (1993)

    Article  Google Scholar 

  33. Kroenke, K., Spitzer, R., Williams, J.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606 (2001)

    Article  Google Scholar 

  34. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning (2014)

    Google Scholar 

  35. Loveys, K., Crutchley, P., Wyatt, E., Coppersmith, G.: Small but mighty: affective micropatterns for quantifying mental health from social media language. In: Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology (2017)

    Google Scholar 

  36. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR Workshop Papers (2013)

    Google Scholar 

  37. Mitchell, M., Hollingshead, K., Coppersmith, G.: Quantifying the language of schizophrenia in social media. In: Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality (2015)

    Google Scholar 

  38. Mrazek, P., Haggerty, R.: Reducing Risks for Mental Disorders: Frontiers for Preventive Intervention Research. National Academies Press, Washington, DC (1994)

    Google Scholar 

  39. Nelson, B., McGorry, P.D., Wichers, M., Wigman, J.T.W., Hartmann, J.A.: Moving from static to dynamic models of the onset of mental disorder: a review. JAMA Psychiatry 74(5), 528534 (2017)

    Article  Google Scholar 

  40. Nguyen, T., Phung, D., Dao, B., Venkatesh, S., Berk, M.: Affective and content analysis of online depression communities. IEEE Trans. Affect. Comput. 5(3), 217226 (2014)

    Article  Google Scholar 

  41. Ono, E., et al.: Relationship between social interaction and mental health. In: IEEE/SICE International Symposium on System Integration (SII) (2011)

    Google Scholar 

  42. Park, M., McDonald, D.W., Cha, M.: Perception differences between the depressed and non-depressed users in Twitter. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media (ICWSM 2013) (2013)

    Google Scholar 

  43. Pavalanathan, U., De Choudhury, M.: Identity management and mental health discourse on social media. In: Proceedings of WWW 2015 Companion: 24th International World Wide Web Conference, Web Science Track, Florence, Italy, 18–22 May 2015 (2015)

    Google Scholar 

  44. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  45. Pennebaker, J.W., Boyd, R.L., Jordan, K., Blackburn, K.: The development and psychometric properties of LIWC2015 (2015)

    Google Scholar 

  46. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)

    Google Scholar 

  47. Radloff, L.: The ces-d scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas. 1, 385–401 (1977)

    Article  Google Scholar 

  48. Raglin, J.: Exercise and mental health.beneficial and detrimental effects. Sport. Med. 9, 323329 (1990)

    Article  Google Scholar 

  49. Robinson, M.S., Alloy, L.B.: Negative cognitive styles and stress-reactive rumination interact to predict depression: a prospective study. Cogn. Ther. Res. 27(3), 275–291 (2003)

    Article  Google Scholar 

  50. Shedler, J., Block, J.: Adolescent drug use and psychological health: a longitudinal inquiry. Am. Psychol. 45(5), 612–630 (1990)

    Article  Google Scholar 

  51. Shen, J., Rudzicz, F.: Detecting anxiety on reddit. In: Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology (2017)

    Google Scholar 

  52. Sox, H., Blatt, M., Hinggins, M., Marton, K.: Medical Decision Making. Butterworth-Heinemann, Boston (1987)

    Google Scholar 

  53. Sprecher, S., Treger, S., Wondra, J.D., Hilaire, N., Wallpe, K.: Taking turns: reciprocal self-disclosure promotes liking in initial interactions. Cogn. Ther. Res. 49(5), 860–866 (2003)

    Google Scholar 

  54. Stirn, A.: Body piercing: medical consequences and psychological motivations. Lancet 361, 12051215 (2003)

    Article  Google Scholar 

  55. Taylor, E.: Assessing, Diagnosing, and Treating Serious Mental Disorders: A Bioecological Approach for Social Workers. Oxford University Press, Oxford (2014)

    Google Scholar 

Download references

Acknowledgement

We thank all anonymous reviewers for their constructive suggestions on our work. We also thank Dr. Márcio Duarte Albasini Mourão for helpful discussions with us on RQ1. This work is partly supported by the Michigan Institute for Data Science, by the National Science Foundation under grant #1344257 and by the John Templeton Foundation under grant #48503.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaoyiran Li or Rada Mihalcea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Mihalcea, R., Wilson, S.R. (2018). Text-Based Detection and Understanding of Changes in Mental Health. In: Staab, S., Koltsova, O., Ignatov, D. (eds) Social Informatics. SocInfo 2018. Lecture Notes in Computer Science(), vol 11186. Springer, Cham. https://doi.org/10.1007/978-3-030-01159-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01159-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01158-1

  • Online ISBN: 978-3-030-01159-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics