Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integrative Collision Avoidance Within RNN-Driven Many-Joint Robot Arms

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Included in the following conference series:

Abstract

Robot arm control and motion planning in dynamically changing environments is a challenging task. It requires an adaptive planning algorithm that generates solutions on-the-fly, incorporating the current environmental conditions. This paper explores an alternative approach. Adaptive planning is realized in a generative Recurrent Neural Network (RNN) architecture, which produces goal-directed motor commands by means of active-inference-based, model-predictive control. As the main contribution, in this paper we show how to integrate local collision avoidance gradients into the active inference process. The result is a control mechanism that avoids arm collisions while concurrently pursuing arm goal poses. The RNN processes embodied, sensorimotor dynamics into which proximity signals from locally embedded distance sensors are injected at the respective joint locations. We demonstrate that a 3D trunk-like many-joint robot arm with up to 80 articulated degrees of freedom (DoF) can maneuver collision-free even through very challenging, dynamic obstacle constellations, evading potential collision sources while pursuing goal-directed arm pose and end-effector control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Butz, M.V.: Towards a unified sub-symbolic computational theory of cognition. Front. Psychol. 7(925) (2016)

    Google Scholar 

  2. Butz, M.V., Bilkey, D., Knott, A., Otte, S.: REPRISE: a retrospective and prospective inference scheme. In: 40th Annual Meeting of the Cognitive Science Society (2018). (Accepted for publication)

    Google Scholar 

  3. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (1999). https://doi.org/10.1007/978-0-85729-398-5

    Book  MATH  Google Scholar 

  4. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010)

    Article  Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations abs/1412.6980 (2015)

    Google Scholar 

  7. Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. J. Graph. Tools 2(1), 21–28 (1997)

    Article  Google Scholar 

  8. Otte, S., Krechel, D., Liwicki, M.: JANNLab neural network framework for Java. In: Poster Proceedings MLDM 2013, pp. 39–46. ibai-publishing, New York (2013)

    Google Scholar 

  9. Otte, S., Liwicki, M., Zell, A.: Dynamic cortex memory: enhancing recurrent neural networks for gradient-based sequence learning. In: Wermter, S., et al. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 1–8. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11179-7_1

    Chapter  Google Scholar 

  10. Otte, S., Liwicki, M., Zell, A.: An analysis of dynamic cortex memory networks. In: International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, pp. 3338–3345, July 2015

    Google Scholar 

  11. Otte, S., Schmitt, T., Friston, K., Butz, M.V.: Inferring adaptive goal-directed behavior within recurrent neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 227–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_27

    Chapter  Google Scholar 

  12. Otte, S., Zwiener, A., Butz, M.V.: Inherently constraint-aware control of many-joint robot arms with inverse recurrent models. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 262–270. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_31

    Chapter  Google Scholar 

  13. Otte, S., Zwiener, A., Hanten, R., Zell, A.: Inverse recurrent models – an application scenario for many-joint robot arm control. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 149–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_18

    Chapter  Google Scholar 

  14. Stulp, F., Sigaud, O.: Robot skill learning: from reinforcement learning to evolution strategies. Paladyn J. Behav. Robot. 4, 49–61 (2013)

    Google Scholar 

  15. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)

    Google Scholar 

  16. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Otte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otte, S., Hofmaier, L., Butz, M.V. (2018). Integrative Collision Avoidance Within RNN-Driven Many-Joint Robot Arms. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics