Abstract
Robot arm control and motion planning in dynamically changing environments is a challenging task. It requires an adaptive planning algorithm that generates solutions on-the-fly, incorporating the current environmental conditions. This paper explores an alternative approach. Adaptive planning is realized in a generative Recurrent Neural Network (RNN) architecture, which produces goal-directed motor commands by means of active-inference-based, model-predictive control. As the main contribution, in this paper we show how to integrate local collision avoidance gradients into the active inference process. The result is a control mechanism that avoids arm collisions while concurrently pursuing arm goal poses. The RNN processes embodied, sensorimotor dynamics into which proximity signals from locally embedded distance sensors are injected at the respective joint locations. We demonstrate that a 3D trunk-like many-joint robot arm with up to 80 articulated degrees of freedom (DoF) can maneuver collision-free even through very challenging, dynamic obstacle constellations, evading potential collision sources while pursuing goal-directed arm pose and end-effector control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Butz, M.V.: Towards a unified sub-symbolic computational theory of cognition. Front. Psychol. 7(925) (2016)
Butz, M.V., Bilkey, D., Knott, A., Otte, S.: REPRISE: a retrospective and prospective inference scheme. In: 40th Annual Meeting of the Cognitive Science Society (2018). (Accepted for publication)
Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (1999). https://doi.org/10.1007/978-0-85729-398-5
Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations abs/1412.6980 (2015)
Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. J. Graph. Tools 2(1), 21–28 (1997)
Otte, S., Krechel, D., Liwicki, M.: JANNLab neural network framework for Java. In: Poster Proceedings MLDM 2013, pp. 39–46. ibai-publishing, New York (2013)
Otte, S., Liwicki, M., Zell, A.: Dynamic cortex memory: enhancing recurrent neural networks for gradient-based sequence learning. In: Wermter, S., et al. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 1–8. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11179-7_1
Otte, S., Liwicki, M., Zell, A.: An analysis of dynamic cortex memory networks. In: International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, pp. 3338–3345, July 2015
Otte, S., Schmitt, T., Friston, K., Butz, M.V.: Inferring adaptive goal-directed behavior within recurrent neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 227–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_27
Otte, S., Zwiener, A., Butz, M.V.: Inherently constraint-aware control of many-joint robot arms with inverse recurrent models. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 262–270. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_31
Otte, S., Zwiener, A., Hanten, R., Zell, A.: Inverse recurrent models – an application scenario for many-joint robot arm control. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 149–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_18
Stulp, F., Sigaud, O.: Robot skill learning: from reinforcement learning to evolution strategies. Paladyn J. Behav. Robot. 4, 49–61 (2013)
Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)
Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Otte, S., Hofmaier, L., Butz, M.V. (2018). Integrative Collision Avoidance Within RNN-Driven Many-Joint Robot Arms. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_73
Download citation
DOI: https://doi.org/10.1007/978-3-030-01424-7_73
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01423-0
Online ISBN: 978-3-030-01424-7
eBook Packages: Computer ScienceComputer Science (R0)