Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Similarity Measures and Models for Movie Series Recommender System

  • Conference paper
  • First Online:
Internet Science (INSCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11193))

Included in the following conference series:

  • 3232 Accesses

Abstract

In this paper we propose a method of movie series recommender system development. Our recommender system is content-based, and movie series are represented by their scripts. We experiment with several semantic similarity measures, lexico-morphological metrics, keywords and vector space models to extract similar movie series. Evaluation is conducted in the experiment with informants. The best results are achieved by distributional semantic approach (i.e., using word2vec technology).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We also experimented with other tools for training word embeddings like FastText and tried larged word embedding models provided by RusVectores and Russian Distributional Thesaurus, but in both cases the results appeared to be worse than those achieved with word2vec trained on the movie series scripts. These results are not reported in this paper due to space limits.

References

  1. Gurbanov, T.: Non-personalized recommendations: method of associations. https://habrahabr.ru/post/257903/. Accessed 1 May 2018

  2. Roizner, M.: How recommender systems work. https://habrahabr.ru/company/dca/blog/280700/. Accessed 1 May 2018

  3. Ricci, F., Rokach, L., Shapira, B.: Introduction ton to Recommender Systems Handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B., (eds.) Recommender Systems Handbook, pp. 1–29 (2011). ISBN 978-0-387-85819-7, https://doi.org/10.1007/978-0-387-85820-3

    MATH  Google Scholar 

  4. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook. ISBN 978-0-387-85819-7, pp. 73–100 (2010). https://doi.org/10.1007/978-0-387-85820-3_3

    Google Scholar 

  5. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS’13 Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2, pp. 3111–3119 (2013)

    Google Scholar 

  6. Tambovcev, Y., Tambovceva, A., Tambovceva, L.: Typology of linguistic units distribution in text as a factor in author profiling task. Vestnik Omskogo universiteta 2, 88–96 (2008)

    Google Scholar 

  7. Pospelova, A., Yagunova, E.: The use of stylistic and genre characteristics to describe text collection style. Novie informacionnie tehnologii v avtomatizirovannih systemah, pp. 347–357 (2014)

    Google Scholar 

  8. Yagunova, E., Pivovarova, L.: Experimental and computational study of N.V.Gogol’ narrative stories. Struct. Funct. Stud. Russ. Linguist. 1(3), 83–104 (2014)

    Google Scholar 

  9. Wojciechowski, A., Goeznynski, K.: A method for measuring similarity of books: a step towards an objective recommender system for readers. In: Human Language Technology. Challenges for Computer Science and Linguistics, pp. 161–174 (2016). https://doi.org/10.1007/978-3-319-43808-5_13

    Chapter  Google Scholar 

  10. Pronoza, E., Yagunova, E.: Low-level features for paraphrase identification. Adv. Artif. Intell. Soft Comput. 59–71 (2015). https://doi.org/10.1007/978-3-319-27060-9

    Google Scholar 

  11. Movie2Vec: Clustering movies by plot. https://movie2vec.wordpress.com/2016/03/22/clustering-movies-by-plot/. Accessed 1 May 2018

  12. Paramonov, S.: How to write a simple recommender system. https://habrahabr.ru/post/230155/. Accessed 1 May 2018

  13. Recommender systems: introduction to the cold start problem. https://habrahabr.ru/company/surfingbird/blog/168733/. Accessed 1 May 2018

  14. Bordashshenko, A., Potemkin, A., Sazanova, E., Shekshuev, S.: Algorithm for the search of similar media reports. Int. J. “Naukovedenie” 7 (2015). ISSN 2223-5167

    Google Scholar 

  15. Myslín, M., Levy, R.: Codeswitching and predictability of meaning in discourse. Language 91(4), 871–905 (2015). https://doi.org/10.1353/lan.2015.0068

    Article  Google Scholar 

  16. Song, Y., Roth, D.: Unsupervised sparse vector densification for short text similarity. In: NAACL HLT 2015—2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, pp. 1275–1280 (2015)

    Google Scholar 

  17. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Williams (2014). ISBN 978-5-8459-1623-5

    Google Scholar 

  19. Scripted Originals Hit Record 455 in 2016. FX Study Finds. https://www.hollywoodreporter.com/live-feed/scripted-originals-hit-record-455-2016-fx-study-finds-958337. Accessed 1 May 2018

  20. Era of Peak TV Continues With 487 Scripted Shows in 2017. https://www.wsj.com/articles/era-of-peak-tv-continues-with-487-scripted-shows-in-2017-1515182593. Accessed 1 May 2018

  21. Best movie series. https://www.kinopoisk.ru/top/lists/45/. Accessed 1 May 2018

  22. The most popular movie series in Kinopoisk. https://www.kinopoisk.ru/top/lists/257/. Accessed 1 May 2018

  23. Gensim. https://radimrehurek.com/gensim/. Accessed 1 May 2018

  24. RusVectōrēs: Russian semantic models. http://rusvectores.org/ru/. Accessed 1 May 2018

  25. Russian Distributional Thesaurus. https://nlpub.ru/Russian_Distributional_Thesaurus. Accessed 1 May 2018

  26. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space

    Google Scholar 

  27. word2vec. https://code.google.com/archive/p/word2vec/. Accessed 1 May 2018

  28. Hierarchical clustering. https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html. Accessed 1 May 2018

  29. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  30. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315 (2007). https://doi.org/10.1126/science.1136800

    Article  MathSciNet  Google Scholar 

  31. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963). https://doi.org/10.2307/2282967

    Article  MathSciNet  Google Scholar 

  32. AffinityPropagation. http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html. Accessed 1 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pronoza Ekaterina .

Editor information

Editors and Affiliations

A Appendix

A Appendix

See Table 3.

Table 3. Genres of movie series from Kinopoisk

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Danil, B., Elena, Y., Ekaterina, P. (2018). Similarity Measures and Models for Movie Series Recommender System. In: Bodrunova, S. (eds) Internet Science. INSCI 2018. Lecture Notes in Computer Science(), vol 11193. Springer, Cham. https://doi.org/10.1007/978-3-030-01437-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01437-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01436-0

  • Online ISBN: 978-3-030-01437-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics