Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

3D Object-Camera and 3D Face-Camera Pose Estimation for Quadcopter Control: Application to Remote Labs

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

Abstract

We present the implementation of two visual pose estimation algorithms (object-camera and face-camera) with a control system for a low cost quadcopter for an application in a remote electronic laboratory. The objective is threefold: (i) to allow the drone to inspect instruments in the remote lab, (ii) to localize a teacher and center his face in the image for student-teacher remote communication, (iii) and to return back home and land on a platform for automatic recharge of the batteries. The object-camera localization system is composed of two complementary visual approaches: (i) a visual SLAM (Simultaneous Localization And Mapping) system, and (ii) a homography-based localization system. We extend the application scenarios of the SLAM system by allowing close range inspection of a planar instrument and autonomous landing. The face-camera localization system is based on 3D modeling of the face, and a state of the art 2D facial point detector. Experiments conducted in a remote laboratory workspace are presented. They prove the robustness of the proposed object-camera visual pose system compared to the SLAM system, the performance of the face-camera visual servoing and pose estimation system in terms of real-time, robustness and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luthon, F., Larroque, B., Khattar, F., Dornaika, F.: Use of gaming and computer vision to drive student motivation in remote learning lab activities. In: 10th Annual International Conference of Education, Research and Innovation, ICERI 2017, pp. 2320–2329 (2017)

    Google Scholar 

  2. Eberli, D., Scaramuzza, D., Weiss, S., Siegwart, R.: Vision based position control for MAVs using one single circular landmark. J. Intell. Robot. Syst. 61(1–4), 495–512 (2011)

    Article  Google Scholar 

  3. Schauwecker, K., Zell, A.: On-board dual-stereo-vision for the navigation of an autonomous MAV. J. Intell. Robot. Syst. 74(1–2), 1–16 (2014)

    Article  Google Scholar 

  4. Flores, G., Zhou, S., Lozano, R., Castillo, P.: A vision and GPS-based real-time trajectory planning for a MAV in unknown and low-sunlight environments. J. Intell. Robot. Syst. 74(1–2), 59–67 (2014)

    Article  Google Scholar 

  5. https://jpchanson.github.io/ARdrone/ParrotDevGuide.pdf

  6. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, pp. 225–234. IEEE (2007)

    Google Scholar 

  7. Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot. Auton. Syst. 62(11), 1646–1656 (2014). Special Issue on Visual Control of Mobile Robots

    Google Scholar 

  8. Luthon, F., Larroque, B.: LaboREM a remote laboratory for game-like training in electronics. IEEE Trans. Learn. Technol. 8(3), 311–321 (2015)

    Article  Google Scholar 

  9. Medioni, G., Kang, S.B.: Emerging Topics in Computer Vision. Prentice Hall PTR, Upper Saddle River (2004)

    Google Scholar 

  10. Krig, S.: Interest Point Detector and Feature Descriptor Survey. In: Computer Vision Metrics. Apress, Berkeley (2014). https://doi.org/10.1007/978-1-4302-5930-5_6

  11. Evangelidis, G.D., Psarakis., E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1858–1865 (2008)

    Article  Google Scholar 

  12. Dornaika, F.: Registering conventional images with low resolution panoramic images. In: The 5th International Conference on Computer Vision Systems (2007)

    Google Scholar 

  13. Fawzi, K., Fadi, D., Franck, L., Benoit, L.: Quadcopter control using onboard monocular camera for enriching remote laboratory facilities. In: 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE (2018)

    Google Scholar 

  14. Lowe, D.G.: Object recognition from local scale-invariant features. In: The proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  15. Nagi, J., Giusti, A., Di Caro, G.A., Gambardella, L.M.: Human control of UAVS using face pose estimates and hand gestures. In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, pp. 252–253. ACM (2014)

    Google Scholar 

  16. Paul, V., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  17. Monajjemi, M., Mohaimenianpour, S., Vaughan, R.: UAV, come to me: end-to-end, multi-scale situated HRI with an uninstrumented human and a distant UAV. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4410–4417. IEEE (2016)

    Google Scholar 

  18. Dornaika, F., Davoine, F.: On appearance based face and facial action tracking. IEEE Trans. Circuits Syst. Video Technol. 16(9), 1107–1124 (2006)

    Article  Google Scholar 

  19. Unzueta, L., Pimenta, W., Goenetxea, J., Santos, L.P., Dornaika, F.: Efficient deformable 3d face model fitting to monocular images (2016)

    Google Scholar 

  20. Kazemi, V., Josephine, S.: One millisecond face alignment with an ensemble of regression trees. In: 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, United States, 23 June 2014 through 28 June 2014, pp. 1867–1874. IEEE Computer Society (2014)

    Google Scholar 

  21. Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)

    Article  Google Scholar 

  22. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPNP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155 (2009)

    Article  Google Scholar 

  23. Ariz, M., Bengoechea, J.J., Villanueva, A., Cabeza, R.: A novel 2d/3d database with automatic face annotation for head tracking and pose estimation. Comput. Vis. Image Underst. 148, 201–210 (2016)

    Article  Google Scholar 

  24. https://youtu.be/42nZTCsfQjE

  25. https://youtu.be/Kr6TnjoByZ0

  26. https://youtu.be/kXZH9uz9Hkc

  27. https://youtu.be/PTMVeJizjF8

  28. https://youtu.be/Xytlz0UdaDk

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawzi Khattar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khattar, F., Dornaika, F., Larroque, B., Luthon, F. (2018). 3D Object-Camera and 3D Face-Camera Pose Estimation for Quadcopter Control: Application to Remote Labs. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics