Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 806))

Included in the following conference series:

  • 601 Accesses

Abstract

The present work proposes a real-time multi-object detection and tracking system to be implemented in commercial areas. The purpose is to gather and make sense of costumer behavior data extracted from surveillance footage (available from ceiling cameras) in order supply retailers with a set of analytics, management and planning tools to help them perform tasks such as planning demand and supply chains and organizing product placement on shelfs. To achieve this goal, deep learning techniques are used, which have been yielding outstanding results in computer vision problems in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016)

    Google Scholar 

  2. Andriyenko, A., Schindler, K., Group, R.S.: Multi-target tracking by continuous energy minimization (2014)

    Google Scholar 

  3. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 9914, pp. 850–865 (2016)

    Google Scholar 

  4. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: Proceedings - International Conference on Image Processing, ICIP 2016, pp. 3464–3468, August 2016

    Google Scholar 

  5. Black, J., Ellis, T., Rosin, P.: Multi view image surveillance and tracking. In: Proceedings - Workshop on Motion and Video Computing, MOTION 2002, pp. 169–174 (2002)

    Google Scholar 

  6. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: Proceedings of the IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), August 2017

    Google Scholar 

  7. Choi, W.: Near-online multi-target tracking with aggregated local flow descriptor. In: Proceedings of the IEEE International Conference on Computer Vision 2015 Inter, pp. 3029–3037 (2015)

    Google Scholar 

  8. Gan, Q., Guo, Q., Zhang, Z., Cho, K.: First step toward model-free, anonymous object tracking with recurrent neural networks, pp. 1–13 (2015)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision 2015 Inter, pp. 1440–1448 (2015)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  11. Green, P.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732 (1995). http://biomet.oxfordjournals.org/content/82/4/711.short

    Article  MathSciNet  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, December 2015

    Google Scholar 

  13. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 9905, pp. 749–765 (2016)

    Chapter  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., USA (2012)

    Google Scholar 

  15. Kuhn, H.: The Hungarian method for the assignment problem. Nav. Res. Logist. 52(1), 7–21 (2005)

    Article  MathSciNet  Google Scholar 

  16. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition (1989)

    Google Scholar 

  17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.y., Berg, A.C.: SSD: single shot multibox detector (2015)

    Google Scholar 

  18. Milan, A., Leal-Taixe, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking, pp. 1–12 (2016). http://arxiv.org/abs/1603.00831

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  20. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4046312, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1102177

    Article  Google Scholar 

  21. Ren, S., He, K., Sun, J., Girshick, R.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, pp. 1–14 (2014)

    Google Scholar 

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (2016)

    Google Scholar 

  24. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 7–12 June, pp. 1–9 (2015)

    Google Scholar 

  25. Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baikova, D., Maia, R., Santos, P., Ferreira, J., Oliveira, J. (2019). Real Time Object Detection and Tracking. In: Novais, P., et al. Ambient Intelligence – Software and Applications –, 9th International Symposium on Ambient Intelligence. ISAmI2018 2018. Advances in Intelligent Systems and Computing, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-030-01746-0_15

Download citation

Publish with us

Policies and ethics