Abstract
The present work proposes a real-time multi-object detection and tracking system to be implemented in commercial areas. The purpose is to gather and make sense of costumer behavior data extracted from surveillance footage (available from ceiling cameras) in order supply retailers with a set of analytics, management and planning tools to help them perform tasks such as planning demand and supply chains and organizing product placement on shelfs. To achieve this goal, deep learning techniques are used, which have been yielding outstanding results in computer vision problems in recent years.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016)
Andriyenko, A., Schindler, K., Group, R.S.: Multi-target tracking by continuous energy minimization (2014)
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 9914, pp. 850–865 (2016)
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: Proceedings - International Conference on Image Processing, ICIP 2016, pp. 3464–3468, August 2016
Black, J., Ellis, T., Rosin, P.: Multi view image surveillance and tracking. In: Proceedings - Workshop on Motion and Video Computing, MOTION 2002, pp. 169–174 (2002)
Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: Proceedings of the IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), August 2017
Choi, W.: Near-online multi-target tracking with aggregated local flow descriptor. In: Proceedings of the IEEE International Conference on Computer Vision 2015 Inter, pp. 3029–3037 (2015)
Gan, Q., Guo, Q., Zhang, Z., Cho, K.: First step toward model-free, anonymous object tracking with recurrent neural networks, pp. 1–13 (2015)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision 2015 Inter, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Green, P.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732 (1995). http://biomet.oxfordjournals.org/content/82/4/711.short
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, December 2015
Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 9905, pp. 749–765 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., USA (2012)
Kuhn, H.: The Hungarian method for the assignment problem. Nav. Res. Logist. 52(1), 7–21 (2005)
LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition (1989)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.y., Berg, A.C.: SSD: single shot multibox detector (2015)
Milan, A., Leal-Taixe, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking, pp. 1–12 (2016). http://arxiv.org/abs/1603.00831
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4046312, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1102177
Ren, S., He, K., Sun, J., Girshick, R.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, pp. 1–14 (2014)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (2016)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 7–12 June, pp. 1–9 (2015)
Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Baikova, D., Maia, R., Santos, P., Ferreira, J., Oliveira, J. (2019). Real Time Object Detection and Tracking. In: Novais, P., et al. Ambient Intelligence – Software and Applications –, 9th International Symposium on Ambient Intelligence. ISAmI2018 2018. Advances in Intelligent Systems and Computing, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-030-01746-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-01746-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01745-3
Online ISBN: 978-3-030-01746-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)