Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Transactional Support for Visual Instance Search

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11223))

Included in the following conference series:

Abstract

This article addresses the issue of dynamicity and durability for scalable indexing of very large and rapidly growing collections of local features for visual instance retrieval. By extending the NV-tree, a scalable disk-based high-dimensional index, we show how to implement the ACID properties of transactions which ensure both dynamicity and durability. We present a detailed performance evaluation of the transactional NV-tree, showing that the insertion throughput is excellent despite the effort to enforce the ACID properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babenko, A., Lempitsky, V.S.: The inverted multi-index. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1247–1260 (2015)

    Article  Google Scholar 

  2. Babenko, A., Lempitsky, V.S.: Efficient indexing of billion-scale datasets of deep descriptors. In: Proceedings of the CVPR, Las Vegas, NV, USA (2016)

    Google Scholar 

  3. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  4. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_15

    Chapter  Google Scholar 

  5. Datar, M., Indyk, P., Immorlica, N., Mirrokni, V.: Locality-Sensitive Hashing Using Stable Distributions. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  6. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proceedings of the ACM SIGMOD, San Diego, CA, USA (2003)

    Google Scholar 

  7. Fukunaga, K., Narendra, P.M.: A branch and bound algorithms for computing k-nearest neighbors. IEEE Trans. Comput. 24(7), 750–753 (1975)

    Article  Google Scholar 

  8. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Francisco (1993)

    MATH  Google Scholar 

  9. Guðmundsson, G.Þ., Amsaleg, L., Jónsson, B.Þ., Franklin, M.J.: Towards engineering a web-scale multimedia service: a case study using Spark. In: Proceedings of the MMSys, Taipei, Taiwan (2017)

    Google Scholar 

  10. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

    Article  Google Scholar 

  11. Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: Proceedings of the ICASSP, Prague, Czech Republic (2011)

    Google Scholar 

  12. Jin, Z., et al.: Complementary projection hashing. In: Proceedings of the ACM ICCV, Barcelona, Spain (2013)

    Google Scholar 

  13. Jónsson, B.Þ., Amsaleg, L., Lejsek, H.: SSD technology enables dynamic maintenance of persistent high-dimensional indexes. In: Proceedings of the ACM ICMR, New York, NY, USA (2016)

    Google Scholar 

  14. Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: an efficient disk-based index for approximate search in very large high-dimensional collections. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 869–883 (2009)

    Article  Google Scholar 

  15. Lejsek, H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: nearest neighbours at the billion scale. In: Proceedings of the ACM ICMR, Trento, Italy (2011)

    Google Scholar 

  16. Lejsek, H., Jónsson, B.Þ., Amsaleg, L., Ásmundsson, F.H.: Dynamicity and durability in scalable visual instance search. arXiv abs/1805.10942 (2018). https://arxiv.org/abs/1805.10942

  17. Li, C., Chang, E., Garcia-Molina, H., Wiederhold, G.: Clustering for approximate similarity search in high-dimensional spaces. IEEE Trans. Knowl. Data Eng. 14(4), 792–808 (2002)

    Article  Google Scholar 

  18. Liu, T., Moore, A., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of the NIPS, Vancouver, BC, Canada (2004)

    Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  20. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Real-Time Data Systems. Manning Publication co., Shelter Island (2015)

    Google Scholar 

  21. Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1), 43–72 (2005)

    Article  MathSciNet  Google Scholar 

  22. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  23. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. Database Syst. 17(1), 94–162 (1992)

    Article  Google Scholar 

  24. Moise, D., Shestakov, D., Guðmundsson, G.Þ., Amsaleg, L.: Indexing and searching 100M images with map-reduce. In: Proceedings of the ACM ICMR, Dallas, TX, USA (2013)

    Google Scholar 

  25. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

    Article  Google Scholar 

  26. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_38

    Chapter  Google Scholar 

  27. Ólafsson, A., Jónsson, B.Þ., Amsaleg, L., Lejsek, H.: Dynamic behavior of balanced NV-trees. Multimed. Syst. 17(2), 83–100 (2011)

    Article  Google Scholar 

  28. Paulevé, L., Jégou, H., Amsaleg, L.: Locality sensitive hashing: a comparison of hash function types and querying mechanisms. Pattern Recogn. Lett. 31(11), 1348–1358 (2010)

    Article  Google Scholar 

  29. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the CVPR, Minneapolis, MN, USA (2007)

    Google Scholar 

  30. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: Proceedings of the CVPR, Anchorage, AK, USA (2008)

    Google Scholar 

  31. Srinivasan, V., Carey, M.J.: Performance of B-tree concurrency control algorithms. In: Proceedings of the ACM SIGMOD, Denver, Colorado, USA (1991)

    Google Scholar 

  32. Sun, X., Wang, C., Xu, C., Zhang, L.: Indexing billions of images for sketch-based retrieval. In: Proceedings of the ACM Multimedia, Barcelona, Spain (2013)

    Google Scholar 

  33. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Efficient and accurate nearest neighbor and closest pair search in high-dimensional space. ACM Trans. Database Syst. 35(3), 20:1–20:46 (2010)

    Article  Google Scholar 

  34. Uhlmann, J.: Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)

    Article  Google Scholar 

  35. Zhang, D., Agrawal, D., Chen, G., Tung, A.: HashFile: an efficient index structure for multimedia data. In: Proceedings of the ICDE, Hannover, Germany (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Amsaleg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L. (2018). Transactional Support for Visual Instance Search. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02224-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02223-5

  • Online ISBN: 978-3-030-02224-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics