Abstract
This article addresses the issue of dynamicity and durability for scalable indexing of very large and rapidly growing collections of local features for visual instance retrieval. By extending the NV-tree, a scalable disk-based high-dimensional index, we show how to implement the ACID properties of transactions which ensure both dynamicity and durability. We present a detailed performance evaluation of the transactional NV-tree, showing that the insertion throughput is excellent despite the effort to enforce the ACID properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babenko, A., Lempitsky, V.S.: The inverted multi-index. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1247–1260 (2015)
Babenko, A., Lempitsky, V.S.: Efficient indexing of billion-scale datasets of deep descriptors. In: Proceedings of the CVPR, Las Vegas, NV, USA (2016)
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_15
Datar, M., Indyk, P., Immorlica, N., Mirrokni, V.: Locality-Sensitive Hashing Using Stable Distributions. MIT Press, Cambridge (2006)
Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proceedings of the ACM SIGMOD, San Diego, CA, USA (2003)
Fukunaga, K., Narendra, P.M.: A branch and bound algorithms for computing k-nearest neighbors. IEEE Trans. Comput. 24(7), 750–753 (1975)
Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Francisco (1993)
Guðmundsson, G.Þ., Amsaleg, L., Jónsson, B.Þ., Franklin, M.J.: Towards engineering a web-scale multimedia service: a case study using Spark. In: Proceedings of the MMSys, Taipei, Taiwan (2017)
Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)
Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: Proceedings of the ICASSP, Prague, Czech Republic (2011)
Jin, Z., et al.: Complementary projection hashing. In: Proceedings of the ACM ICCV, Barcelona, Spain (2013)
Jónsson, B.Þ., Amsaleg, L., Lejsek, H.: SSD technology enables dynamic maintenance of persistent high-dimensional indexes. In: Proceedings of the ACM ICMR, New York, NY, USA (2016)
Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: an efficient disk-based index for approximate search in very large high-dimensional collections. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 869–883 (2009)
Lejsek, H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: nearest neighbours at the billion scale. In: Proceedings of the ACM ICMR, Trento, Italy (2011)
Lejsek, H., Jónsson, B.Þ., Amsaleg, L., Ásmundsson, F.H.: Dynamicity and durability in scalable visual instance search. arXiv abs/1805.10942 (2018). https://arxiv.org/abs/1805.10942
Li, C., Chang, E., Garcia-Molina, H., Wiederhold, G.: Clustering for approximate similarity search in high-dimensional spaces. IEEE Trans. Knowl. Data Eng. 14(4), 792–808 (2002)
Liu, T., Moore, A., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of the NIPS, Vancouver, BC, Canada (2004)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Real-Time Data Systems. Manning Publication co., Shelter Island (2015)
Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1), 43–72 (2005)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. Database Syst. 17(1), 94–162 (1992)
Moise, D., Shestakov, D., Guðmundsson, G.Þ., Amsaleg, L.: Indexing and searching 100M images with map-reduce. In: Proceedings of the ACM ICMR, Dallas, TX, USA (2013)
Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)
Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_38
Ólafsson, A., Jónsson, B.Þ., Amsaleg, L., Lejsek, H.: Dynamic behavior of balanced NV-trees. Multimed. Syst. 17(2), 83–100 (2011)
Paulevé, L., Jégou, H., Amsaleg, L.: Locality sensitive hashing: a comparison of hash function types and querying mechanisms. Pattern Recogn. Lett. 31(11), 1348–1358 (2010)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the CVPR, Minneapolis, MN, USA (2007)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: Proceedings of the CVPR, Anchorage, AK, USA (2008)
Srinivasan, V., Carey, M.J.: Performance of B-tree concurrency control algorithms. In: Proceedings of the ACM SIGMOD, Denver, Colorado, USA (1991)
Sun, X., Wang, C., Xu, C., Zhang, L.: Indexing billions of images for sketch-based retrieval. In: Proceedings of the ACM Multimedia, Barcelona, Spain (2013)
Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Efficient and accurate nearest neighbor and closest pair search in high-dimensional space. ACM Trans. Database Syst. 35(3), 20:1–20:46 (2010)
Uhlmann, J.: Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)
Zhang, D., Agrawal, D., Chen, G., Tung, A.: HashFile: an efficient index structure for multimedia data. In: Proceedings of the ICDE, Hannover, Germany (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L. (2018). Transactional Support for Visual Instance Search. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-02224-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02223-5
Online ISBN: 978-3-030-02224-2
eBook Packages: Computer ScienceComputer Science (R0)