Abstract
Increasingly many industrial spheres are enforced by law to satisfy strict RAMS requirements—reliability, availability, maintainability, and safety. Applied to Fault Maintenance Trees (FMTs), formal methods offer flexible and trustworthy techniques to quantify the resilience of (abstract models of) systems. However, the estimated metrics are relevant only as far as the model reflects the actual system: Refining an abstract model to reduce the gap with reality is crucial for the usefulness of the results. In this work, we take a practical approach at the challenge by studying a Heating, Ventilation and Air-Conditioning unit (HVAC), ubiquitous in smart buildings. Using probabilistic and statistical model checking, we assess RAMS metrics of a basic fault maintenance tree HVAC model. We then implement four modifications augmenting the expressivity of the FMT model, and show that reliability, availability, expected number of failures, and costs, can vary by orders of magnitude depending on involved modelling details.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aven, T., Jensen, U. (eds.): Maintenance optimization. Stochastic Models in Reliability, pp. 169–211. Springer, New York (1999). https://doi.org/10.1007/978-0-387-22593-7_5
ASHRAE: HVAC systems and equipment. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA (1996)
Au-Yong, C.P., Ali, A.S., Ahmad, F.: Enhancing building maintenance cost performance with proper management of spare parts. JQME 22(1), 51–61 (2016)
Barlow, R.E., Proschan, F.: Mathematical theory of reliability. Science 148(3674), 1208–1209 (1965)
Cauchi, N., Hoque, K.A., Abate, A., Stoelinga, M.: Efficient probabilistic model checking of smart building maintenance using fault maintenance trees. In: BuildSys (2017)
Cauchi, N., Macek, K., Abate, A.: Model-based predictive maintenance inbuilding automation systems with user discomfort. Energy 138(Suppl. C), 306–315 (2017)
Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 244–263 (1986)
Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
David, A., Larsen, K., Legay, A., Mikučionis, M., Poulsen, D.: Uppaal SMC tutorial. Intl. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)
David, A., Larry, S.: The least variable phase type distribution is Erlang. Communications in statistics. Stoch. Models 3(3), 467–473 (1987)
Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In: RAMS, pp. 286–293 (1990)
Faisal, I., Mahmoud, M.: Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection scheduling and planning. J. Loss Prev. Process Ind. 16(6), 561–573 (2003)
Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_19
Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: DSN, pp. 299–310. IEEE, June 2016
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking: advances and applications. In: Drechsler, R. (ed.) Formal System Verification, pp. 73–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57685-5_3
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Nicolai, R.P., Dekker, R.: Optimal maintenance of multi-component systems: a review. In: Kobbacy, K.A.H., Murthy, D.N.P. (eds.) Complex System Maintenance Handbook, pp. 263–286. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-84800-011-7_11
Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods. Wiley, Hoboken (2009)
Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance analysis and optimization via statistical model checking. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 331–347. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_22
Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)
Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook. Technical report, U.S. Nuclear Regulatory Commission, Washington DC (1981)
Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)
Wang, D., Tsui, K.L.: Statistical modeling of bearing degradation signals. IEEE Trans. Reliab. 66(4), 1331–1344 (2017)
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_17
Acknowledgements
This work is partially supported by the Alan Turing Institute, UK; Malta’s ENDEAVOUR Scholarships Scheme; and the NWO SEQUOIA project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Abate, A., Budde, C.E., Cauchi, N., van Harmelen, A., Hoque, K.A., Stoelinga, M. (2018). Modelling Smart Buildings Using Fault Maintenance Trees. In: Bakhshi, R., Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A. (eds) Computer Performance Engineering. EPEW 2018. Lecture Notes in Computer Science(), vol 11178. Springer, Cham. https://doi.org/10.1007/978-3-030-02227-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-02227-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02226-6
Online ISBN: 978-3-030-02227-3
eBook Packages: Computer ScienceComputer Science (R0)