Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Apple Surface Pesticide Residue Detection Method Based on Hyperspectral Imaging

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering (IScIDE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11266))

  • 1999 Accesses

Abstract

In order to study the rapid and effective non-destructive detection method of pesticide residues on apple surface, this paper uses hyperspectral imaging technology to verify the feasibility of pesticide residue detection on apple surface. 225 apple samples from two groups were collected to construct the discriminant models of two pesticide residues, i.e., chlorpyrifos and carbendazim. The Hough circle transformation technique was used to determine the Region of Interest (ROI) automatically, and the averaged spectral value of the ROI is calculated as the representative spectrum of the sample. Then the Savitzky-Golay smoothing method was used for spectral denoising. Finally, the discriminant modeling is performed on the whole band with five methods: linear discriminant analysis, linear support vector machine, K nearest neighbor, decision tree and subspace discriminant ensemble. Furthermore, feature band selection was carried out by the successive projection algorithm and subspace discriminant ensemble method, then discriminant models were constructed on the feature band using linear discriminant analysis, linear support vector machine and K nearest neighbor. The experimental results show that the classification accuracy in both the whole band and the selected feature band for the detection of pesticide residues can be up to 95%. For the prediction of pesticide residue concentration, the subspace discriminant ensemble method based on the full band performs better, in which chlorpyrifos pesticide concentration prediction accuracy of up to 95%. The results confirmed the feasibility and effectiveness of hyperspectral imaging to detect pesticide residues on apple surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dhakal, S., Li, Y., Peng, Y., et al.: Prototype instrument development for non-destructive detection of pesticide residue in apple surface using Raman technology. J. Food Eng. 123(2), 94–103 (2014)

    Article  Google Scholar 

  2. Huang, H., Liu, L., Ngadi, M.O.: Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors 14(4), 7248–7276 (2014)

    Article  Google Scholar 

  3. Chen, Q., Zhang, C., Zhao, J., et al.: Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety. Trends Anal. Chem. 52(52), 261–274 (2013)

    Article  Google Scholar 

  4. Pu, Y.-Y., Feng, Y.-Z., Sun, D.-W.: Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: a review. Compr. Rev. Food Sci. Food Saf. 14(2), 176–188 (2015)

    Article  Google Scholar 

  5. Lorente, D., Aleixos, N., Gómez-Sanchis, J., et al.: Food Bioprocess Technol. 5, 1121 (2012). https://doi.org/10.1007/s11947-011-0725-1

    Article  Google Scholar 

  6. Nicolaï, B.M., Lötze, E., Peirs, A., et al.: Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biol. Technol. 40(1), 1–6 (2006)

    Article  Google Scholar 

  7. Zhao, J.: Detecting subtle bruises on fruits with hyperspectral imaging. Trans. Chin. Soc. Agric. Mach. 39(1), 106–109 (2008)

    Google Scholar 

  8. Wang, J., Nakano, K., Ohashi, S., et al.: Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosys. Eng. 108(4), 345–351 (2011)

    Article  Google Scholar 

  9. Rajkumar, P., Wang, N., Eimasry, G., et al.: Studies on banana fruit quality and maturity stages using hyperspectral imaging. J. Food Eng. 108(1), 194–200 (2012)

    Article  Google Scholar 

  10. Nanyam, Y., Choudhary, R., Gupta, L., et al.: A decision-fusion strategy for fruit quality inspection using hyperspectral imaging. Biosys. Eng. 111(1), 118–125 (2012)

    Article  Google Scholar 

  11. Lorente, D., Blasco, J., Serrano, A.J., et al.: Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images. Food Bioprocess Technol. 6(12), 3613–3619 (2013)

    Article  Google Scholar 

  12. Haff, R.P., Saranwong, S., Thanapase, W., et al.: Automatic image analysis and spot classification for detection of fruit fly infestation in hyperspectral images of mangoes. Postharvest Biol. Technol. 86(8), 23–28 (2013)

    Article  Google Scholar 

  13. Xue, L., Li, J., Liu, M.: Detecting pesticide residue on navel orange surface by using hyperspectral imaging. Acta Optica Sinica 28(12), 2277–2280 (2008)

    Article  Google Scholar 

  14. Nansen, C., Abidi, N., Sidumo, A.J., et al.: Using spatial structure analysis of hyperspectral imaging data and fourier transformed infrared analysis to determine bioactivity of surface pesticide treatment. Remote Sens. 2(4), 908–925 (2010)

    Article  Google Scholar 

  15. Dai, F., Hong, T., Zhang, K., et al.: Nondestructive detection of pesticide residue on longan surface based on near infrared spectroscopy. In: International Conference on Intelligent Computation Technology and Automation, pp. 781–783. IEEE (2010)

    Google Scholar 

  16. Liu, M.F., Zhang, L.B., Jian-Guo, H.E., et al.: Study on non-destructive detection of pesticide residues on Lingwu long jujubes’ surface using hyperspectral imaging. Food Mach. 5, 87–92 (2014)

    Google Scholar 

  17. Wu, C.C., Liao, Y.H., Lo, W.S., et al.: Band weighting spectral measurement for detection of pesticide residues using hyperspectral remote sensing. In: Geoscience and Remote Sensing Symposium, pp. 457–460. IEEE (2015)

    Google Scholar 

  18. Chen, S.Y., Liao, Y.H., Lo, W.S., et al.: Pesticide residue detection by hyperspectral imaging sensors. In: The Workshop on Hyperspectral Image & Signal Processing: Evolution in Remote Sensing, pp. 1–4 (2015)

    Google Scholar 

  19. Nansen, C., Singh, K., Mian, A., et al.: Using hyperspectral imaging to characterize consistency of coffee brands and their respective roasting classes. J. Food Eng. 190, 34–39 (2016)

    Article  Google Scholar 

  20. Sun, J., Cong, S., Mao, H., et al.: Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique. J. Food Process Eng. 41(2), e12654 (2017)

    Article  Google Scholar 

  21. Mohite, J., Karale, Y., Pappula, S., et al.: Detection of pesticide (cyantraniliprole) residue on grapes using hyperspectral sensing. In: SPIE Commercial + Scientific Sensing and Imaging, p. 102170P (2017)

    Google Scholar 

  22. Araújo, M.C.U., Saldanha, T.C.B., Galvão, R.K.H., et al.: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometr. Intell. Lab. Syst. 57(2), 65–73 (2001)

    Article  Google Scholar 

  23. Krawczyk, B., Minku, L.L., Woniak, M., et al.: Ensemble learning for data stream analysis. Inf. Fusion 37(C), 132–156 (2017)

    Article  Google Scholar 

  24. Ho, T.K.: Random subspace method for constructing decision trees. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  25. Zhou, Z.H., Yang, Q.: Machine Learning and Its Applications. Tsinghua University Press, Beijing (2011)

    Google Scholar 

  26. Boot, T., Nibbering, D.: Forecasting using random subspace methods. Tinbergen Institute Discussion Paper (2016)

    Google Scholar 

  27. Hang, R., Liu, Q., Song, H., et al.: Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion. IEEE Trans. Geosci. Remote Sens. 54(2), 783–794 (2016)

    Article  Google Scholar 

  28. Yang, H., Jia, X., Patras, I., et al.: Random subspace supervised descent method for regression problems in computer vision. IEEE Signal Process. Lett. 22(10), 1816–1820 (2015)

    Article  Google Scholar 

  29. Gu, J., Jiao, L., Liu, F., et al.: Random subspace based ensemble sparse representation. Pattern Recognit. 74, 544–555 (2017)

    Article  Google Scholar 

  30. Vásquez, N., Magan, C., Oblitas, J., et al.: Comparison between artificial neural network and partial least squares regression models for hardness modeling during the ripening process of Swiss-type cheese using spectral profiles. J. Food Eng. 219, 8–15 (2017)

    Article  Google Scholar 

  31. Panwar, S., Raut, S.: Survey on lane detection using Hough transform technique. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4(1), 401–405 (2015)

    Google Scholar 

  32. Vieira, L.H.P., Pagnoca, E.A., Milioni, F., et al.: Tracking futsal players with a wide-angle lens camera: accuracy analysis of the radial distortion correction based on an improved Hough transform algorithm. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 5(3), 221–231 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the China Postdoctoral Science Foundation under Grant No. 2018M633585, Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2018JQ6060, Yangling Demonstration Zone Science and Technology Plan Project under Grant No. 2016NY-31, Shaanxi University Science and Technology Innovation Project under Grant No. S201710712127, Shaanxi Agricultural Science and Technology Innovation and Research Project under Grant No. 2015NY023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinrong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, Y., He, J., Fu, H., Shao, X., Li, Z. (2018). Apple Surface Pesticide Residue Detection Method Based on Hyperspectral Imaging. In: Peng, Y., Yu, K., Lu, J., Jiang, X. (eds) Intelligence Science and Big Data Engineering. IScIDE 2018. Lecture Notes in Computer Science(), vol 11266. Springer, Cham. https://doi.org/10.1007/978-3-030-02698-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02698-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02697-4

  • Online ISBN: 978-3-030-02698-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics