Abstract
An indispensable element of any Intelligent Tutoring Systems is the student model since it enables the system to cope with student’s particular needs. Furthermore, data accumulated by educational systems in bug libraries can be exploited to build a student model by data mining methods. In this work, we built a student model for a virtual reality system used by a Mexican utility to train electricians in operations with medium tension energized lines using its bug libraries. First, errors are mapped to features using a Bag-of-Errors scheme. Additional information about the courses, and the students is also incorporated. Then, a Decision Tree is employed to build the student model. Finally, several student models are built, and compared in terms of Accuracy, Sensitivity, and Specificity. Results show that the proposed model is able to identify trained/untrained students with high accuracy. Moreover, these models shed light on critical task knowledge components which may be used to improve the learning experience of technical operators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nkambou, R., Bourdeau, J., Mizoguchi, R.: Introduction: what are intelligent tutoring systems, and why this book? In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 1–12. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14363-2_1
Ranganathan, R., Vanlehn, K., Van de Sande, B.: What do students do when using a step-based tutoring system? Res. Pract. Technol. Enhanc. Learn. 9(2), 323–347 (2014)
Woolf, B.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-Learning. Morgan Kaufmann Publishers, Burlington (2009)
Günel, K., Aşliyan, R.: Extracting learning concepts from educational texts in intelligent tutoring systems automatically. Expert Syst. Appl. 37(7), 5017–5022 (2010)
Hernández, Y., Cervantes-Salgado, M., Pérez-Ramírez, M., Mejía-Lavalle, M.: Data-driven construction of a student model using Bayesian networks in an electrical domain. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016, Part II. LNCS (LNAI), vol. 10062, pp. 481–490. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62428-0_39
Vanlehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Ed. 16(3), 227–265 (2006)
Vanlehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. 46(4), 197–221 (2011)
Ayala-García, A., Galván-Bobadilla, I., Arroyo, G., Pérez-Ramírez, M., Muñoz-Román, J.: Virtual reality training system for maintenance and operation of high-voltage overhead power lines. Virtual Real. 20(1), 27–40 (2016)
Sison, R., Shimura, M.: Student modeling and machine learning. Int. J. Artif. Intell. Educ. 9(1), 128–158 (1994)
Cao, N., Cui, W.: Introduction to Text Visualization. Atlantis Press, Paris (2016)
Argotte, L., Hernandez, Y., Arroyo-Figueroa, G.: Intelligent e-learning system for training power systems operators. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI), vol. 6882, pp. 94–103. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23863-5_10
Romero, C., Ventura, S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33(1), 135–146 (2007)
Romero, C., Ventura, S., Espejo, P.G., Hervás, C.: Data mining algorithms to classify students. In: Educational Data Mining 2008, Proceedings of the 1st International Conference on Educational Data Mining, Montreal, Québec, Canada, 20–21 June 2008, pp. 8–17 (2008). http://www.educationaldatamining.org/EDM2008/uploads/proc/1_Romero_3.pdf
Ibrahim, Z., Rusli, D.: Predicting students’ academic performance: comparing artificial neural network, decision tree and linear regression. In: Proceedings of the 21st Annual SAS Malaysia Forum, pp. 1–6 (2007)
Guruler, H., Istanbullu, A., Karahasan, M.: A new student performance analysing system using knowledge discovery in higher educational databases. Comput. Educ. 55(1), 247–254 (2010)
Hernández, Y., Pérez, M.: Open student model for blended training in the electrical tests domain. In: Lagunas, O.P., Alcántara, O.H., Figueroa, G.A. (eds.) MICAI 2015. LNCS (LNAI), vol. 9414, pp. 195–207. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27101-9_14
Hernández, Y., Pérez, M.: A B-learning model for training within electrical tests domain. Intell. Learn. Environ. 87, 43–52 (2014)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2011). https://doi.org/10.1007/978-0-387-84858-7
Piech, C., Sahami, M., Koller, D., Cooper, S., Blikstein, P.: Modeling how students learn to program. In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education - SIGCSE 2012, pp. 1–6 (2012)
Kwartler, T.: Text Mining in Practice with R. Wiley, Chichester (2017)
Loh, W.: Fifty years of classification and regression trees. Int. Stat. Rev. 82(3), 329–348 (2014)
Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive Partitioning and Regression Trees. R package version 4.1-11 (2017)
Loh, W.: Classification and regression trees. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 1(1), 14–23 (2011)
Acknowledgments
GS-B thanks the Consejo Nacional de Ciencia y Tecnología for the support provided under the Cátedra-Conacyt contract 969.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Santamaría-Bonfil, G., Hernández, Y., Pérez-Ramírez, M., Arroyo-Figueroa, G. (2018). Bag of Errors: Automatic Inference of a Student Model in an Electrical Training System. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Computational Intelligence. MICAI 2017. Lecture Notes in Computer Science(), vol 10633. Springer, Cham. https://doi.org/10.1007/978-3-030-02840-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-02840-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02839-8
Online ISBN: 978-3-030-02840-4
eBook Packages: Computer ScienceComputer Science (R0)