Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bag of Errors: Automatic Inference of a Student Model in an Electrical Training System

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10633))

Included in the following conference series:

  • 500 Accesses

Abstract

An indispensable element of any Intelligent Tutoring Systems is the student model since it enables the system to cope with student’s particular needs. Furthermore, data accumulated by educational systems in bug libraries can be exploited to build a student model by data mining methods. In this work, we built a student model for a virtual reality system used by a Mexican utility to train electricians in operations with medium tension energized lines using its bug libraries. First, errors are mapped to features using a Bag-of-Errors scheme. Additional information about the courses, and the students is also incorporated. Then, a Decision Tree is employed to build the student model. Finally, several student models are built, and compared in terms of Accuracy, Sensitivity, and Specificity. Results show that the proposed model is able to identify trained/untrained students with high accuracy. Moreover, these models shed light on critical task knowledge components which may be used to improve the learning experience of technical operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nkambou, R., Bourdeau, J., Mizoguchi, R.: Introduction: what are intelligent tutoring systems, and why this book? In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 1–12. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14363-2_1

    Chapter  MATH  Google Scholar 

  2. Ranganathan, R., Vanlehn, K., Van de Sande, B.: What do students do when using a step-based tutoring system? Res. Pract. Technol. Enhanc. Learn. 9(2), 323–347 (2014)

    Google Scholar 

  3. Woolf, B.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-Learning. Morgan Kaufmann Publishers, Burlington (2009)

    Google Scholar 

  4. Günel, K., Aşliyan, R.: Extracting learning concepts from educational texts in intelligent tutoring systems automatically. Expert Syst. Appl. 37(7), 5017–5022 (2010)

    Article  Google Scholar 

  5. Hernández, Y., Cervantes-Salgado, M., Pérez-Ramírez, M., Mejía-Lavalle, M.: Data-driven construction of a student model using Bayesian networks in an electrical domain. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016, Part II. LNCS (LNAI), vol. 10062, pp. 481–490. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62428-0_39

    Chapter  Google Scholar 

  6. Vanlehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Ed. 16(3), 227–265 (2006)

    Google Scholar 

  7. Vanlehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. 46(4), 197–221 (2011)

    Article  Google Scholar 

  8. Ayala-García, A., Galván-Bobadilla, I., Arroyo, G., Pérez-Ramírez, M., Muñoz-Román, J.: Virtual reality training system for maintenance and operation of high-voltage overhead power lines. Virtual Real. 20(1), 27–40 (2016)

    Article  Google Scholar 

  9. Sison, R., Shimura, M.: Student modeling and machine learning. Int. J. Artif. Intell. Educ. 9(1), 128–158 (1994)

    Google Scholar 

  10. Cao, N., Cui, W.: Introduction to Text Visualization. Atlantis Press, Paris (2016)

    Book  Google Scholar 

  11. Argotte, L., Hernandez, Y., Arroyo-Figueroa, G.: Intelligent e-learning system for training power systems operators. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI), vol. 6882, pp. 94–103. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23863-5_10

    Chapter  Google Scholar 

  12. Romero, C., Ventura, S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33(1), 135–146 (2007)

    Article  Google Scholar 

  13. Romero, C., Ventura, S., Espejo, P.G., Hervás, C.: Data mining algorithms to classify students. In: Educational Data Mining 2008, Proceedings of the 1st International Conference on Educational Data Mining, Montreal, Québec, Canada, 20–21 June 2008, pp. 8–17 (2008). http://www.educationaldatamining.org/EDM2008/uploads/proc/1_Romero_3.pdf

  14. Ibrahim, Z., Rusli, D.: Predicting students’ academic performance: comparing artificial neural network, decision tree and linear regression. In: Proceedings of the 21st Annual SAS Malaysia Forum, pp. 1–6 (2007)

    Google Scholar 

  15. Guruler, H., Istanbullu, A., Karahasan, M.: A new student performance analysing system using knowledge discovery in higher educational databases. Comput. Educ. 55(1), 247–254 (2010)

    Article  Google Scholar 

  16. Hernández, Y., Pérez, M.: Open student model for blended training in the electrical tests domain. In: Lagunas, O.P., Alcántara, O.H., Figueroa, G.A. (eds.) MICAI 2015. LNCS (LNAI), vol. 9414, pp. 195–207. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27101-9_14

    Chapter  Google Scholar 

  17. Hernández, Y., Pérez, M.: A B-learning model for training within electrical tests domain. Intell. Learn. Environ. 87, 43–52 (2014)

    Google Scholar 

  18. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2011). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  19. Piech, C., Sahami, M., Koller, D., Cooper, S., Blikstein, P.: Modeling how students learn to program. In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education - SIGCSE 2012, pp. 1–6 (2012)

    Google Scholar 

  20. Kwartler, T.: Text Mining in Practice with R. Wiley, Chichester (2017)

    Book  Google Scholar 

  21. Loh, W.: Fifty years of classification and regression trees. Int. Stat. Rev. 82(3), 329–348 (2014)

    Article  MathSciNet  Google Scholar 

  22. Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive Partitioning and Regression Trees. R package version 4.1-11 (2017)

    Google Scholar 

  23. Loh, W.: Classification and regression trees. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 1(1), 14–23 (2011)

    Google Scholar 

Download references

Acknowledgments

GS-B thanks the Consejo Nacional de Ciencia y Tecnología for the support provided under the Cátedra-Conacyt contract 969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Santamaría-Bonfil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santamaría-Bonfil, G., Hernández, Y., Pérez-Ramírez, M., Arroyo-Figueroa, G. (2018). Bag of Errors: Automatic Inference of a Student Model in an Electrical Training System. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Computational Intelligence. MICAI 2017. Lecture Notes in Computer Science(), vol 10633. Springer, Cham. https://doi.org/10.1007/978-3-030-02840-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02840-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02839-8

  • Online ISBN: 978-3-030-02840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics