Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11247))

Included in the following conference series:

Abstract

Smart contracts—shared stateful reactive objects stored on a blockchain—are widely employed nowadays for mediating exchanges of crypto-currency between multiple untrusted parties. Despite a lot of attention given by the formal methods community to the notion of smart contract correctness, only a few efforts targeted their lifetime properties. In this paper, we focus on reasoning about execution traces of smart contracts. We report on our preliminary results of mechanically verifying some of such properties by embedding a smart contract language into the Coq proof assistant. We also discuss several common scenarios, all of which require multi-step blockchain-based arbitration and thus must be implemented via stateful contracts, and discuss possible temporal specifications of the corresponding smart contract implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    At the moment of this writing, the contract still holds approximately 0.043 ETH.

  2. 2.

    For the full specification of Scilla syntax and runnable contract examples, please, refer to http://scilla-lang.org.

  3. 3.

    The mechanised embedding of a subset of Scilla into Coq is publicly available for downloads and experiments: https://github.com/ilyasergey/scilla-coq.

  4. 4.

    All definitions, theorems and proofs are in the accompanying Coq development.

  5. 5.

    That is, there might be bugs in the code, and we invite the reader to find them!

References

  1. BlockKing contract (2016). https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1

  2. Alois, J.: Ethereum Parity Hack May Impact ETH 500,000 or \$146 Million (2017). https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/

  3. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_8

    Chapter  Google Scholar 

  4. Bamboo (2017). https://github.com/pirapira/bamboo

  5. Bansal, K., Koskinen, E., Tripp, O.: Automatic generation of precise and useful commutativity conditions. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 115–132. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_7

    Chapter  MATH  Google Scholar 

  6. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour your money. In: SANER, pp. 442–446. IEEE (2017)

    Google Scholar 

  7. Coq Development Team: The Coq Proof Assistant Reference Manual - Version 8.8 (2018). http://coq.inria.fr/

  8. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3), 95–120 (1988)

    Article  MathSciNet  Google Scholar 

  9. del Castillo, M.: The DAO attack, 16 June 2016

    Google Scholar 

  10. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards creating a safe smart contract: lessons and insights from a cryptocurrency lab. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_6

    Chapter  Google Scholar 

  11. Grossman, S.: Online detection of effectively callback free objects with applications to smart contracts. PACMPL 2(POPL), 48:1–48:28 (2018)

    Google Scholar 

  12. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM 37(3), 549–587 (1990)

    Article  MathSciNet  Google Scholar 

  13. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart contracts. In: NDSS (2018)

    Google Scholar 

  14. Lamport, L.: “Sometime” is sometimes “not never” - on the temporal logic of programs. In: POPL, pp. 174–185. ACM Press (1980)

    Google Scholar 

  15. Lamport, L.: The part-time parliament. ACM TOPLAS 16(2), 133–169 (1998)

    MATH  Google Scholar 

  16. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In: POPL, pp. 42–54. ACM (2006)

    Google Scholar 

  17. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_11

    Chapter  Google Scholar 

  18. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and suicidal contracts at scale. CoRR, abs/1802.06038 (2018)

    Google Scholar 

  19. Obsidian (2018). https://mcoblenz.github.io/Obsidian

  20. Peyton Jones, S.L.: The Implementation of Functional Programming Languages. Prentice-Hall, Upper Saddle River (1987)

    MATH  Google Scholar 

  21. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  22. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. Lisp Symb. Comput. 6(3–4), 289–360 (1993)

    Google Scholar 

  23. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: 1st Workshop on Trusted Smart Contracts (2017)

    Google Scholar 

  24. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level language (2018). https://arxiv.org/abs/1801.00687

  25. Sirer, E.G.: Reentrancy woes in smart contracts, 13 July 2016

    Google Scholar 

  26. Solidity: a contract-oriented, high-level language for implementing smart contracts (2018)

    Google Scholar 

  27. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014). https://ethereum.github.io/yellowpaper/paper.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Sergey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sergey, I., Kumar, A., Hobor, A. (2018). Temporal Properties of Smart Contracts. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Industrial Practice. ISoLA 2018. Lecture Notes in Computer Science(), vol 11247. Springer, Cham. https://doi.org/10.1007/978-3-030-03427-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03427-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03426-9

  • Online ISBN: 978-3-030-03427-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics