Abstract
Half of the general population experiences a headache during any given year. Medical data and information in turn provide knowledge on which physicians base their decisions and actions but, in general, it is not easy to manage them. It becomes increasingly necessary to extract useful knowledge and make scientific decisions for diagnosis and treatment of this disease from the database. This paper presents comparison of data and attribute selected features by automatic machine learning methods and algorithms, and by diagnostic tools and expert physicians, almost all from the last decade.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hagen, K., Zwart, J.-A., Vatten, L., Stovner, L.J., Bovin, G.: Prevalence of migraine and non-migrainous headache – head-HUNT, a large population-based study. Cephalalgia 20(10), 900–906 (2000)
Simić, S., Simić, D., Slankamenac, P., Simić-Ivkov, M.: Computer-assisted diagnosis of primary headaches. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 314–321. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87656-4_39
Relich, M., Bzdyra, K.: Knowledge discovery in enterprise databases for forecasting new product success. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 121–129. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24834-9_15
Simić, S., Simić, D., Slankamenac, P., Simić-Ivkov, M.: Rule-based fuzzy logic system for diagnosing migraine. In: Darzentas, J., Vouros, George A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 383–388. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87881-0_37
Krawczyk, B., Simić, D., Simić, S., Woźniak, M.: Automatic diagnosis of primary headaches by machine learning methods. Open Med. 8(2), 157–165 (2013)
Jackowski, K., Jankowski, D., Ksieniewic, P., Simić, D., Simić, S., Wozniak, M.: Ensemble classifier systems for headache diagnosis. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine. AISC, vol. 284, pp. 273–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06596-0_25
Simić, S., Banković, Z., Simić, D., Simić, S.D.: A hybrid clustering approach for diagnosing medical diseases. In: de Cos Juez, F., et al. (eds.) Hybrid Artificial Intelligent Systems. LNCS, vol. 10870, pp. 741–752. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92639-1_62
The International Classification of Headache Disorders. 3rd edn. https://www.ichd-3.org/
Arendt-Nielsen, L.: Headache: muscle tension, trigger points and referred pain. Int. J. Clin. Pract. 69(Suppl. 182), 8–12 (2015)
Tallón-Ballesteros, A.J., Correia, L., Cho, S.-B.: Stochastic and non-stochastic feature selection. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 592–598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_64
Arauzo-Azofra, A., Benitez, J.M., Castro, J.L.: Consistency measures for feature selection. J. Intell. Inf. Syst. 30(3), 273–292 (2008)
Kira, K., Rendell, L. A.: A practical approach to feature selection. In: Ninth International Workshop on Machine Learning, pp. 249–256 (1992)
Rosario, F.S., Thangadurai, K.: Relief: feature selection approach. Int. J. Innov. Res. Dev. 4(11), 218–224 (2015)
Hansen, M.H., Yu, B.: Model selection and the principle of minimum description length. J. Am. Stat. Assoc. 96(454), 746–774 (2001)
Sugiura, N.: Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. 7(454), 13–26 (1978)
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35488-8
Michelakos, I., Mallios, N., Papageorgiou, E., Vassilakopoulos, M.: Ant colony optimization and data mining. In: Bessis, N., Xhafa, F. (eds.) Next Generation Data Technologies for Collective Computational Intelligence. SCI, vol. 352, pp. 31–60. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20344-2_2
Celik, U., Yurtay, N.: An ant colony optimization algorithm-based classification for the diagnosis of primary headaches using a website questionnaire expert system. Turk. J. Electr. Eng. Comput. Sci. 25(5), 4200–4210 (2017)
Tallón-Ballesteros, A.J., Riquelme, J.C.: Tackling ant colony optimization meta-heuristic as search method in feature subset selection based on correlation or consistency measures. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 386–393. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10840-7_47
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Simić, S., Banković, Z., Simić, D., Simić, S.D. (2018). Different Approaches of Data and Attribute Selection on Headache Disorder. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11315. Springer, Cham. https://doi.org/10.1007/978-3-030-03496-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-03496-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03495-5
Online ISBN: 978-3-030-03496-2
eBook Packages: Computer ScienceComputer Science (R0)