Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Visual Recognition Model Based on Hierarchical Feature Extraction and Multi-layer SNN

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

  • 3924 Accesses

Abstract

In this paper, a visual pattern recognition model is proposed, which effectively combines hierarchical feature extraction model and coding method on multi-layer SNN. This paper takes HMAX model as feature extraction model and adopts independent component analysis (ICA) to improve it, so that the model can satisfy the sparsity of information extraction and the output result is more suitable for SNN processing. Multi-layer SNN is used as classifier and the firing of spikes is not limited in the learning process. We use valid phase coding to connect these two parts. Through the experiments on the MNIST and Caltech101 datasets, it can be found that the model has good classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mély, D.A., Serre, T.: Towards a theory of computation in the visual cortex. In: Zhao, Q. (ed.) Computational and Cognitive Neuroscience of Vision. CST, pp. 59–84. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-0213-7_4

    Chapter  Google Scholar 

  2. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019 (1999)

    Article  Google Scholar 

  3. Liu, C., Sun, F.: HMAX model: a survey. In: Neural Networks (IJCNN), pp. 1–7. IEEE (2015)

    Google Scholar 

  4. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: 2005 IEEE Computer Society Conference Computer Vision and Pattern Recognition. CVPR 2005, vol. 2, pp. 994–1000 (2005)

    Google Scholar 

  5. Serre, T., Wolf, L., Bileschi, S., et al.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29, 411–426 (2007)

    Article  Google Scholar 

  6. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. Int. J. Comput. Vis. 80, 45–57 (2008)

    Article  Google Scholar 

  7. Hu, X., Zhang, J., Li, J., et al.: Sparsity-regularized HMAX for visual recognition. Plos One 9, e81813 (2014)

    Article  Google Scholar 

  8. Ma, B., Su, Y., Jurie, F.: Covariance descriptor based on bio-inspired features for person re-identification and face verification. Image Vis. Comput. 32, 379–390 (2014)

    Article  Google Scholar 

  9. Dura-Bernal, S., Wennekers, T., Denham, S.L.: Modelling object perception in cortex: hierarchical Bayesian networks and belief propagation. In: 2011 45th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2011)

    Google Scholar 

  10. Sufikarimi, H., Mohammadi, K.: Speed up biological inspired object recognition, HMAX. In: Intelligent Systems and Signal Processing (ICSPIS) (2017)

    Google Scholar 

  11. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  12. Zheng, Y., et al.: Sparse temporal encoding of visual features for robust object recognition by spiking neurons. IEEE Trans. Neural Netw. Learn. Syst. 1–11 (2018). https://doi.org/10.1109/TNNLS.2018.2812811

  13. Yu, Q., Tang, H., Tan, K.C., et al.: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. Plos One 8, e78318 (2013)

    Article  Google Scholar 

  14. Bohte, S.M., Kok, J.N., La Poutre, H.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37 (2002)

    Article  Google Scholar 

  15. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)

    Article  Google Scholar 

  16. Sporea, I., Grüning, A.: Supervised learning in multilayer spiking neural networks. Neural Comput. 25, 473–509 (2013)

    Article  MathSciNet  Google Scholar 

  17. Pyle, R., Rosenbaum, R.: Spatiotemporal dynamics and reliable computations in recurrent spiking neural networks. Phys. Rev. Lett. 118(1), 018103 (2017)

    Article  Google Scholar 

  18. Gardner, B., Sporea, I., Grüning, A.: Learning spatiotemporally encoded pattern transformations in structured spiking neural networks. Neural Comput. 27, 2548–2586 (2015)

    Article  Google Scholar 

  19. Nadasdy, Z.: Information encoding and reconstruction from the phase of action potentials. Front. Syst. Neurosci. 3, 6 (2009)

    Article  Google Scholar 

  20. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37, 3311–3325 (1997)

    Article  Google Scholar 

  21. Rossum, M.V.: A novel spike distance. Neural Comput. 13, 751–763 (2001)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Computer Science (2014)

    Google Scholar 

  23. Xu, X., Jin, X., Yan, R., et al.: Visual pattern recognition using enhanced visual features and PSD-based learning rule. IEEE Trans. Cogn. Dev. Syst. 10, 205–212 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61603119 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY17F020028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Lu, W., Fang, Q., Xia, Y. (2018). A Visual Recognition Model Based on Hierarchical Feature Extraction and Multi-layer SNN. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics