Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Transfer Learning with Active Queries for Relational Data Modeling Across Multiple Information Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11303))

Included in the following conference series:

  • 2266 Accesses

Abstract

This paper studies the relationship prediction problem in multi-network scenarios, aiming to overcome the network sparsity challenge where the labeled data (connected node pairs) are much less than the unlabeled data (unconnected node pairs). The TAQIL framework is proposed by using transfer learning to get knowledge from the related source networks and then use active learning to query the labels of the most informative instances from the oracle in the target network. A new query function is also proposed in order to better use the parameters output by the transfer learning method. The alternate use of transfer learning and active learning allows adaptive transfer of knowledge across multiple networks to mitigate cold start and meantime improve the prediction accuracy with active queries in the target network. The experimental results on both non-network datasets and network datasets demonstrate the significant improvement in prediction accuracy compared with several benchmark methods and related state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ics.uci.edu/mlearn/MLRepository.html.

  2. 2.

    http://people.csail.mit.edu/jrennie/20Newsgroups/.

  3. 3.

    http://www.daviddlewis.com/resources/testcollections/.

  4. 4.

    http://arnetminer.org/socialtieacross/.

References

  1. Cao, B., Liu, N.N., Yang, Q.: Transfer learning for collective link prediction in multiple heterogenous domains. In: Proceedings of International Conference on Machine Learning, pp. 159–166. Citeseer (2010)

    Google Scholar 

  2. Chattopadhyay, R., Fan, W., Davidson, I., Panchanathan, S., Ye, J.: Joint transfer and batch-mode active learning. In: Proceedings of International Conference on Machine Learning, pp. 253–261 (2013)

    Google Scholar 

  3. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Proceedings of International Conference on Machine Learning, pp. 193–200. ACM (2007)

    Google Scholar 

  4. Dong, Y., Zhang, J., Tang, J., Chawla, N.V., Wang, B.: CoupledLP: link prediction in coupled networks. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208. ACM (2015)

    Google Scholar 

  5. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. 7(2), 3–12 (2005)

    Article  Google Scholar 

  6. Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_9

    Chapter  Google Scholar 

  7. Huang, S.J., Chen, S.: Transfer learning with active queries from source domain. In: Proceedings of IJCAI, pp. 1592–1598 (2016)

    Google Scholar 

  8. Kale, D., Ghazvininejad, M., Ramakrishna, A., He, J., Liu, Y.: Hierarchical active transfer learning. In: Proceedings of SIAM International Conference on Data Mining, pp. 514–522. SIAM (2015)

    Chapter  Google Scholar 

  9. Kale, D., Liu, Y.: Accelerating active learning with transfer learning. In: Proceedings of IEEE International Conference on Data Mining, pp. 1085–1090. IEEE (2013)

    Google Scholar 

  10. Li, S., Xue, Y., Wang, Z., Zhou, G.: Active learning for cross-domain sentiment classification. In: IJCAI, pp. 2127–2133 (2013)

    Google Scholar 

  11. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  12. Saha, A., Rai, P., Daumé, H., Venkatasubramanian, S., DuVall, S.L.: Active supervised domain adaptation. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 97–112. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_7

    Chapter  Google Scholar 

  13. Settles, B.: Active learning literature survey. Univ. Wisconsin-Madison, Madison, WI. Technical report, CS Technical report 1648 (2009)

    Google Scholar 

  14. Shi, X., Fan, W., Ren, J.: Actively transfer domain knowledge. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 342–357. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_23

    Chapter  Google Scholar 

  15. Tang, J., Lou, T., Kleinberg, J., Wu, S.: Transfer learning to infer social ties across heterogeneous networks. ACM Trans. Inf. Syst. (TOIS) 34(2), 7 (2016)

    Article  Google Scholar 

  16. Wang, X., Huang, T.K., Schneider, J.: Active transfer learning under model shift. In: Proceedings of IEEE International Conference on Machine Learning, pp. 1305–1313 (2014)

    Google Scholar 

  17. Yang, L., Hanneke, S., Carbonell, J.: A theory of transfer learning with applications to active learning. Mach. Learn. 90(2), 161–189 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhang, J., Kong, X., Philip, S.Y.: Predicting social links for new users across aligned heterogeneous social networks. In: Proceedings of IEEE International Conference on Data Mining, pp. 1289–1294. IEEE (2013)

    Google Scholar 

  19. Zhao, L., Pan, S.J., Yang, Q.: A unified framework of active transfer learning for cross-system recommendation. Artif. Intell. 245, 38–55 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 61571238 and No. 61603197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jia Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, KJ., Zhang, K., Jiang, XL., Wang, Y. (2018). Transfer Learning with Active Queries for Relational Data Modeling Across Multiple Information Networks. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04182-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04181-6

  • Online ISBN: 978-3-030-04182-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics