Abstract
Ocean measuring point is an important way to obtain many kinds of marine data. Reasonable layout of ocean measuring points can efficiently obtain marine data. At present, a marine measuring point can acquire multiple types of marine data, only by comprehensively using multiple types of ocean data we can more effectively discover the relationship between various ocean measuring points. This paper proposes a mapping method for fusion marine multiple time series into an image, and uses the similarity between different images to construct a complex network. Also, We build a complex network of marine multiple time series by selecting appropriate thresholds. Compared with the traditional method, the network constructed by our approach can find more accurate rules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), xii (2002)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Barthálemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)
Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network approach. Comput. Oper. Res. 33(11), 3171–3184 (2006)
Caldarelli, G., Battiston, S., Garlaschelli, D., Catanzaro, M.: Emergence of complexity in financial networks. Lect. Notes Phys. 650, 399–423 (2004)
Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. U.S.A. 103(7), 2015–2020 (2006)
Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven contagion phenomena. Science (New York, N.Y.) 342(6164), 1337–1342 (2013)
Eliazar, I., Koren, T., Klafter, J.: Searching circular dna strands. J. Phys. Condens. Matter 19(6), 160–164 (2007)
Gómezgardeñes, J., Latora, V., Moreno, Y., Profumo, E.: Spreading of sexually transmitted diseases in heterosexual populations. Proc. Natl. Acad. Sci. U.S.A. 105(5), 1399–1404 (2008)
Karl, D.M., Michaels, A.F.: The Hawaiian ocean time-series (hot) and bermuda atlantic time-series study (bats). Deep. Sea Res. Part II Top. Stud. Ocean. 43(2–3), 127–128 (1996)
Kobayashi, M., Okamoto, Y.: Submodularity of minimum-cost spanning tree games, pp. 231–238 (2014)
Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)
Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.66(1 Pt 2), 016128 (2002)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Nodoushan, E.J.: Monthly forecasting of water quality parameters within bayesian networks: A case study of honolulu, pacific ocean. Civil Eng. J. 4(1), 188 (2018)
Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895 (2005)
Boccaletti, S., Latora, V., Moreno, Y., Chavezf, M., Hwang, D.-U.: Complex networks: structure and dynamics. Complex Syst. Complex. Sci. 424(4-5), 175–308 (2006)
Stanley, H.E., et al.: Self-organized complexity in economics and finance. Proc. Natl. Acad. Sci. U.S.A. 99(3), 2561–2565 (2002)
Tumminello, M., Matteo, T.D., Aste, T., Mantegna, R.N.: Correlation based networks of equity returns sampled at different time horizons. Eur. Phys. J. B 55(2), 209–217 (2007)
Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. arXiv preprint arXiv:1506.00327 (2015)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity, vol. 13, pp. 600–612. IEEE (2004)
Acknowledgments
This thesis is supported by National Key R&D Program of China (2016YFC1403200)(2016YFC1401900), youth fund project of east china sea branch of state oceanic administration (201614).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, L., Huang, Z., Shi, S., Chen, K., Xu, L., Zhang, G. (2018). Marine Multiple Time Series Relevance Discovery Based on Complex Network. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-04224-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04223-3
Online ISBN: 978-3-030-04224-0
eBook Packages: Computer ScienceComputer Science (R0)