Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Marine Multiple Time Series Relevance Discovery Based on Complex Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11306))

Included in the following conference series:

Abstract

Ocean measuring point is an important way to obtain many kinds of marine data. Reasonable layout of ocean measuring points can efficiently obtain marine data. At present, a marine measuring point can acquire multiple types of marine data, only by comprehensively using multiple types of ocean data we can more effectively discover the relationship between various ocean measuring points. This paper proposes a mapping method for fusion marine multiple time series into an image, and uses the similarity between different images to construct a complex network. Also, We build a complex network of marine multiple time series by selecting appropriate thresholds. Compared with the traditional method, the network constructed by our approach can find more accurate rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), xii (2002)

    Article  MathSciNet  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  3. Barthálemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)

    Google Scholar 

  4. Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network approach. Comput. Oper. Res. 33(11), 3171–3184 (2006)

    Article  Google Scholar 

  5. Caldarelli, G., Battiston, S., Garlaschelli, D., Catanzaro, M.: Emergence of complexity in financial networks. Lect. Notes Phys. 650, 399–423 (2004)

    Article  MathSciNet  Google Scholar 

  6. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. U.S.A. 103(7), 2015–2020 (2006)

    Article  Google Scholar 

  7. Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven contagion phenomena. Science (New York, N.Y.) 342(6164), 1337–1342 (2013)

    Article  Google Scholar 

  8. Eliazar, I., Koren, T., Klafter, J.: Searching circular dna strands. J. Phys. Condens. Matter 19(6), 160–164 (2007)

    Article  Google Scholar 

  9. Gómezgardeñes, J., Latora, V., Moreno, Y., Profumo, E.: Spreading of sexually transmitted diseases in heterosexual populations. Proc. Natl. Acad. Sci. U.S.A. 105(5), 1399–1404 (2008)

    Article  Google Scholar 

  10. Karl, D.M., Michaels, A.F.: The Hawaiian ocean time-series (hot) and bermuda atlantic time-series study (bats). Deep. Sea Res. Part II Top. Stud. Ocean. 43(2–3), 127–128 (1996)

    Article  Google Scholar 

  11. Kobayashi, M., Okamoto, Y.: Submodularity of minimum-cost spanning tree games, pp. 231–238 (2014)

    Article  MathSciNet  Google Scholar 

  12. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  Google Scholar 

  13. Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.66(1 Pt 2), 016128 (2002)

    Google Scholar 

  14. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  15. Nodoushan, E.J.: Monthly forecasting of water quality parameters within bayesian networks: A case study of honolulu, pacific ocean. Civil Eng. J. 4(1), 188 (2018)

    Google Scholar 

  16. Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895 (2005)

    Article  Google Scholar 

  17. Boccaletti, S., Latora, V., Moreno, Y., Chavezf, M., Hwang, D.-U.: Complex networks: structure and dynamics. Complex Syst. Complex. Sci. 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  18. Stanley, H.E., et al.: Self-organized complexity in economics and finance. Proc. Natl. Acad. Sci. U.S.A. 99(3), 2561–2565 (2002)

    Article  Google Scholar 

  19. Tumminello, M., Matteo, T.D., Aste, T., Mantegna, R.N.: Correlation based networks of equity returns sampled at different time horizons. Eur. Phys. J. B 55(2), 209–217 (2007)

    Article  MathSciNet  Google Scholar 

  20. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. arXiv preprint arXiv:1506.00327 (2015)

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity, vol. 13, pp. 600–612. IEEE (2004)

    Google Scholar 

Download references

Acknowledgments

This thesis is supported by National Key R&D Program of China (2016YFC1403200)(2016YFC1401900), youth fund project of east china sea branch of state oceanic administration (201614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongwen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Huang, Z., Shi, S., Chen, K., Xu, L., Zhang, G. (2018). Marine Multiple Time Series Relevance Discovery Based on Complex Network. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04224-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04223-3

  • Online ISBN: 978-3-030-04224-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics