Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Impulsive Constraint Control of Coupled Neural Network Model with Actual Saturation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11307))

Included in the following conference series:

Abstract

In this paper, the exponential synchronization of a class of coupled neural network model under impulsive constraint control is presented. Under impulsive constraint control, several useful linear matrix inequalities (LMIs) are derived by applying Lyapunov function and generalized sector condition. Moreover, under impulsive partial constraint control, a novel sufficient condition guaranteeing exponential synchronization of coupled neural network model is presented. Finally, a numerical simulation is presented to verify the validity of the theoretical analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, L., Zheng, W.X., Guo, G.: Network-based practical set consensus of multi-agent systems subject to input saturation. Automatica 89, 316–324 (2018)

    Article  MathSciNet  Google Scholar 

  2. He, W., Qian, F., Cao, J.: Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control. Neural Networks 85, 1–9 (2017)

    Article  Google Scholar 

  3. Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Springer Science & Business Media, New York (2001)

    Chapter  Google Scholar 

  4. Huang, H., Li, D., Lin, Z., Xi, Y.: An improved robust model predictive control design in the presence of actuator saturation. Automatica 47(4), 861–864 (2011)

    Article  MathSciNet  Google Scholar 

  5. Huang, T., Chan, A., Huang, Y., Cao, J.: Stability of cohen-grossberg neural networks with time-varying delays. Neural Networks 20(8), 868–873 (2007)

    Article  Google Scholar 

  6. Huang, T., Li, C., Duan, S., Starzyk, J.A.: Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans. Neural Netw. Learning Syst. 23(6), 866–875 (2012)

    Article  Google Scholar 

  7. Huang, T., Li, C., Yu, W., Chen, G.: Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback. Nonlinearity 22(3), 569 (2009)

    Article  MathSciNet  Google Scholar 

  8. Li, C., Feng, G., Huang, T.: On hybrid impulsive and switching neural networks. IEEE Trans. Syst. Man Cybern. Part B 38(6), 1549–1560 (2008)

    Article  Google Scholar 

  9. Li, H., Li, C., Huang, T.: Periodicity and stability for variable-time impulsive neural networks. Neural Networks 94, 24–33 (2017)

    Article  Google Scholar 

  10. Li, H., Li, C., Huang, T., Ouyang, D.: Fixed-time stability and stabilization of impulsive dynamical systems. J. Frankl. Inst. 354(18), 8626–8644 (2017)

    Article  MathSciNet  Google Scholar 

  11. Li, H., Li, C., Huang, T., Zhang, W.: Fixed-time stabilization of impulsive cohen-grossberg BAM neural networks. Neural Networks 98, 203–211 (2018)

    Article  Google Scholar 

  12. Li, H., Li, C., Zhang, W., Xu, J.: Global dissipativity of inertial neural networks with proportional delay via new generalized halanay inequalities. Neural Process. Lett., 1–19 (2018)

    Google Scholar 

  13. Li, L., Li, C., Li, H.: An analysis and design for time-varying structures dynamical networks via state constraint impulsive control. Int. J. Control, 1–9 (2018)

    Google Scholar 

  14. Li, L., Li, C., Li, H.: Fully state constraint impulsive control for non-autonomous delayed nonlinear dynamic systems. Nonlinear Anal. Hybrid Syst. 29, 383–394 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, Z., Fang, J., Huang, T., Miao, Q., Wang, H.: Impulsive synchronization of discrete-time networked oscillators with partial input saturation. Inf. Sci. 422, 531–541 (2018)

    Article  Google Scholar 

  16. Lin, X., Li, X., Zou, Y., Li, S.: Finite-time stabilization of switched linear systems with nonlinear saturating actuators. J. Frankl. Inst. 351(3), 1464–1482 (2014)

    Article  MathSciNet  Google Scholar 

  17. Liu, D., Michel, A.N.: Stability analysis of systems with partial state saturation nonlinearities. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(3), 230–232 (1996)

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Cao, J., Yu, W., Song, Q.: Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

    Article  Google Scholar 

  19. Rakkiyappan, R., Latha, V.P., Zhu, Q., Yao, Z.: Exponential synchronization of markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal. Hybrid Syst. 24, 28–44 (2017)

    Article  MathSciNet  Google Scholar 

  20. Seuret, A., da Silva Jr., J.M.G.: Taking into account period variations and actuator saturation in sampled-data systems. Syst. Control Lett. 61(12), 1286–1293 (2012)

    Article  MathSciNet  Google Scholar 

  21. Zhou, B., Gao, H., Lin, Z., Duan, G.: Stabilization of linear systems with distributed input delay and input saturation. Automatica 48(5), 712–724 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zou, F., Nossek, J.A.: Bifurcation and chaos in cellular neural networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(3), 166–173 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation of China (Nos. 61633011, 61374078), Qatar National Research Fund (No. NPRP 8-274-2-107), Graduate Student Research Innovation Project of Chongqing (No. CYB17076), Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2015jcyjBX0052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, D., Huang, T., Li, C., Chen, C., Li, H. (2018). Impulsive Constraint Control of Coupled Neural Network Model with Actual Saturation. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11307. Springer, Cham. https://doi.org/10.1007/978-3-030-04239-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04239-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04238-7

  • Online ISBN: 978-3-030-04239-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics