Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Managing Private Credentials by Privacy-Preserving Biometrics

  • Conference paper
  • First Online:
Emerging Technologies for Authorization and Authentication (ETAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11263))

  • 549 Accesses

Abstract

We investigate in this paper the need to managing a user’s private credentials using privacy-preserving biometrics, define several private credential management work models under different trust models between a user and an external party. A general pipeline using privacy-preserving biometrics for private credential management is proposed to achieve the purpose of biometric template protection, biometric-secret binding, and biometric recognition accuracy performance improvement. The proposed scheme was implemented and tested in the European CIP project PIDaaS, and demonstrated advantages in privacy preservation and accuracy performance preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Google Identity Platform. https://developers.google.com/identity/

  2. Facebook Login. https://developers.facebook.com/docs/facebook-login/

  3. OpenID. https://zh.wikipedia.org/wiki/OpenID

  4. bankID. https://www.bankid.no/en/company/

  5. Claim-Based Identity. https://en.wikipedia.org/wiki/Claims-based_identity

  6. Alrodhan, W., Mitchell, C.: Enhancing user authentication in claim-based identity management. In: 2010 International Symposium on Collaborative Technologies and Systems, pp. 75–83 (2010)

    Google Scholar 

  7. Yang, B., Chu, H., Li, G., Petrovic, S., Busch, C.: Cloud password manager using privacy-preserved biometrics. In: Proceedings of 2014 IEEE International Conference on Cloud Engineering (2014)

    Google Scholar 

  8. ISO/IEC 24745: Biometric information protection (2011)

    Google Scholar 

  9. FIDO Alliance. https://fidoalliance.org/

  10. Nandakumar, K., Jain, A.: Biometric template protection: bridging the performance gap between theory and practice. IEEE Sig. Process. Mag. 32(5), 88–100 (2015)

    Article  Google Scholar 

  11. Bui, F., Martin, K., Lu, H., Plataniotis, K., Hatzinakos, D.: Fuzzy key binding strategies based on quantization index modulation (QIM) for biometric encryption (BE) applications. IEEE Trans. Inf. Forensics Secur. 5(1), 118–132 (2010)

    Article  Google Scholar 

  12. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the 6th ACM Conference on Computer and Communications Security, pp. 28–36 (1999)

    Google Scholar 

  13. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypto. 38(2), 237–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buhan, I., Doumen, J., Hartel, P., Veldhuis, R.: Constructing practical fuzzy extractors using QIM centre for telematics and information technology. University of Twente, Enschede, Technical report. TR-CTIT-07-52, pp. 1381-3625 (2007)

    Google Scholar 

  15. Sutcu, Y., Li, Q., Memon, N.: Protecting biometric templates with sketch: theory and practice. IEEE Trans. Inf. Forensics Secur. 2(3), 503–512 (2007)

    Article  Google Scholar 

  16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comp. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Teoh, A., Ngo, D., Goh, A.: Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recogn. 37(11), 2245–2255 (2004)

    Article  Google Scholar 

  18. Yang, B., Busch, C., Gafurov, D., Bours, P.: Renewable minutiae templates with tunable size and security. In: ICPR, pp. 878–881 (2010)

    Google Scholar 

  19. Yang, B., Hartung, D., Simoens, K., Busch, C.: Dynamic random projection for biometric template protection. In: IEEE BTAS, pp. 1–7 (2010)

    Google Scholar 

  20. Simoens, K., et al.: Criteria towards metrics for benchmarking template protection algorithms. In: ICB (2012)

    Google Scholar 

  21. http://www.viulib.org

  22. https://github.com/ALIZE-Speaker-Recognition

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, B., Li, G. (2018). Managing Private Credentials by Privacy-Preserving Biometrics. In: Saracino, A., Mori, P. (eds) Emerging Technologies for Authorization and Authentication. ETAA 2018. Lecture Notes in Computer Science(), vol 11263. Springer, Cham. https://doi.org/10.1007/978-3-030-04372-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04372-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04371-1

  • Online ISBN: 978-3-030-04372-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics