Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. A standardised objective tool for PD diagnosis and management is still missing and the adopted monitoring approaches are suboptimal. The development of a technological solution implementing e-health systems is investigated in various research projects. In this paper we propose DAPHNE system, aimed to implement innovative and sustainable services for the early diagnosis, for the therapy and for the management of PD by using wearable devices, information and communication technologies (ICTs), such as mobile Health (mHealth) apps and Internet of things (IoT) protocols. To such a degree, DAPHNE successfully proposes an Ambient Assisted Living (AAL) solution that supports the clinicians in early and differential diagnosis, promotes a precision medicine approach by enabling an at-home monitoring service optimised according the patient’s needs, stimulates the self-management of patients and caregivers in the care path, significantly reduces healthcare costs in terms of diagnostic examinations/hospitalisation and, as major breakthrough, permits a PD diagnosis up to 7 years earlier than current methods, so maximising the drug therapy efficacy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H. U., & Jönsson, B. (2012). The economic cost of brain disorders in Europe. European Journal of Neurology, 19, 155–162. https://doi.org/10.1111/j.1468-1331.2011.03590.x.
Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030.
Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. Lancet, 386, 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.
Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79, 368–376. https://doi.org/10.1136/jnnp.2007.131045.
Wolters, E. C. (2008). Variability in the clinical expression of Parkinson’s disease. Journal of the Neurological Sciences, 266, 197–203.
Gelb, D. J., Oliver, E., & Gilman, S. (1999). Criteria for the diagnosis of Parkinson’s disease. Archives of Neurology, 56, 33–39.
Berg, D., Lang, A. E., Postuma, R. B., Maetzler, W., Deuschl, G., Gasser, T., et al. (2013). Changing the research criteria for the diagnosis of Parkinson’s disease: Obstacles and opportunities. Lancet Neurology, 12, 514–524. https://doi.org/10.1016/s1474-4422(13)70047-4.
Hughes, A. J., Ben-Shlomo, Y., Daniel, S. E., & Lees, A. J. (1992). UK Parkinson’s disease society brain bank clinical diagnostic criteria. Journal of Neurology, Neurosurgery and Psychiatry, 55, 181–184.
Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez‐Martin, P., et al. (2008). Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23, 2129–2170. https://doi.org/10.1002/mds.22340.
Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: Onset, progression, and mortality. Neurology, 17, 427–442. https://doi.org/10.1212/WNL.17.5.427.
Wicks, P., Stamford, J., Grootenhuis, M. A., Haverman, L., & Ahmed, S. (2014). Innovations in e-health. Quality of Life Research, 23, 195–203. https://doi.org/10.1007/s11136-013-0458-x.
Sahyoun, A., Chehab, K., Al-madani, O., Aloul, F., & Sagahyroon, A. (2016). ParkNosis: Diagnosing Parkinson’s disease using mobile phones. In 18th International Conference on e-Health Networking, Applications and Services (Healthcom) (pp. 1–6). IEEE.
Cohen, S., Bataille, L. R., & Martig, A. K. (2016). Enabling breakthroughs in Parkinson’s disease with wearable technologies and big data analytics. mHealth, 2. https://doi.org/10.21037/mhealth.2016.04.02.
Zhao, Y., Heida, T., Van Wegen, E. E. H., Bloem, B. R., & Van Wezel, R. J. A. (2015). E-health support in people with Parkinson’s disease with smart glasses: A survey of user requirements and expectations in the Netherlands. Journal of Parkinson’s Disorder, 5, 369–378. https://doi.org/10.3233/jpd-150568.
Cancela, J., Mascato, S. V., Gatsios, D., Rigas, G., Marcante, A., Gentile, G., et al. (2016). Monitoring of motor and non-motor symptoms of Parkinson’s disease through a mHealth platform. In 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 663–666). IEEE.
Espay, A. J., Bonato, P., Nahab, F. B., Maetzler, W., Dean, J. M., Klucken, J., et al. (2016). Technology in Parkinson’s disease: Challenges and opportunities. Movement Disorders, 31, 1272–1282. https://doi.org/10.1002/mds.26642.
Aquilano, M., Cavallo, F., Bonaccorsi, M., Esposito, R., Rovini, E., Filippi, M., et al. (2012). Ambient assisted living and ageing: Preliminary results of RITA project. In 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5823–5826). San Diego, CA, USA: IEEE.
Cavallo, F., Aquilano, M., Odetti, L., Arvati, M., & Carrozza, M. C. (2009). A first step toward a pervasive and smart ZigBee sensor system for assistance and rehabilitation. In IEEE International Conference on Rehabilitation Robotics, 2009 (ICORR 2009) (pp. 632–637).
Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114, 2283–2301.
Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V., & Brooks, D. J. (1998). Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. Journal of Neurology, Neurosurgery and Psychiatry, 64, 314–319. https://doi.org/10.1136/jnnp.66.2.256.
Ponsen, M. M., Stoffers, D., Wolters, E. C., Booij, J., & Berendse, H. W. (2010). Olfactory testing combined with dopamine transporter imaging as a method to detect prodromal Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 81, 396–399. https://doi.org/10.1136/jnnp.2009.183715.
Maremmani, C., Rossi, G., Tambasco, N., Fattori, B., Pieroni, A., Ramat, S., et al. (2012). The validity and reliability of the Italian Olfactory Identification Test (IOIT) in healthy subjects and in Parkinson’s disease patients. Parkinsonism and Related Disorders, 18, 788–793. https://doi.org/10.1016/j.parkreldis.2012.03.021.
Connolly, B. S., & Lang, A. E. (2014). Pharmacological treatment of Parkinson disease. JAMA, 311, 1670–1683. https://doi.org/10.1001/jama.2014.3654.
De La Fuente-Fernández, R. (2012). Role of DaTSCAN and clinical diagnosis in Parkinson disease. Neurology, 78, 696–701. https://doi.org/10.1212/WNL.0b013e318248e520.
Cavallo, F., Esposito, D., Rovini, E., Aquilano, M., Carrozza, M. C., Dario, P., et al. (2013). Preliminary evaluation of SensHand V1 in assessing motor skills performance in Parkinson disease. In 13th International Conference on Rehabilitation Robotics (ICORR) (pp. 1–6). Seattle, WA, USA: IEEE.
Maremmani, C., Bongioanni, P., Cavallo, F., Esposito, D., Rovini, E., Aquilano, M., et al. (2013). Preliminary evaluation of Sensorfoot V1 and Senshand V1 in assessing motor skills performance of Parkinson’s disease patients. Journal of the Neurological Sciences, 333, e67.
Rovini, E., Esposito, D., Maremmani, C., Bongioanni, P., & Cavallo, F. (2014). Using wearable sensor systems for objective assessment of Parkinson’s disease. In 20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing, Benevento, Italy (pp. 862–867).
Rovini, E., Esposito, D., Maremmani, C., Bongioanni, P., & Cavallo, F. (2015). Empowering patients in self-management of Parkinson’s disease through cooperative ICT systems.
Cavallo, F., Maremmani, C., Esposito, D., Rovini, E., Dario, P., & Carrozza, M. C. (2014). Method and related apparatus for monitoring biomechanical performances of human limbs.
Sarkar, S., Raymick, J., & Imam, S. (2016). Neuroprotective and therapeutic strategies against Parkinson’s disease: Recent perspectives. International Journal of Molecular Sciences, 17. https://doi.org/10.3390/ijms17060904.
Reid, R. J., Coleman, K., Johnson, E. A., Fishman, P. A., Hsu, C., Soman, M. P., et al. (2010). The Group Health medical home at year two: Cost savings, higher patient satisfaction, and less burnout for providers. Health Affairs, 29, 835–843. https://doi.org/10.1377/hlthaff.2010.0158.
de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson’s disease. Lancet Neurology, 5, 525–535. https://doi.org/10.1016/S1016-3190(10)60044-4.
El-Tallawy, H. N., Farghaly, W. M., Shehata, G. A., Rageh, T. A., Hakeem, N. M. A., Al Hamed, M. A., et al. (2013). Prevalence of Parkinson’s disease and other types of Parkinsonism in Al Kharga district, Egypt. Neuropsychiatric Disease and Treatment, 9.
von Campenhausen, S., Winter, Y., Rodrigues e Silva, A., Sampaio, C., Ruzicka, E., Barone, P., et al. (2011). Costs of illness and care in Parkinson’s Disease: An evaluation in six countries. European Neuropsychopharmacology, 21, 180–191. https://doi.org/10.1016/j.euroneuro.2010.08.002.
Liou, H. H., Wu, C. Y., Chiu, Y. H., Yen, A. M. F., Chen, R. C., Chen, T. F., et al. (2008). Natural history and effectiveness of early detection of Parkinson’s disease: Results from two community-based programmes in Taiwan (KCIS no. 11). Journal of Evaluation in Clinical Practice, 14, 198–202. https://doi.org/10.1111/j.1365-2753.2007.00832.x.
Agarwal, S., LeFevre, A. E., Lee, J., L’Engle, K., Mehl, G., Sinha, C., et al. (2016). WHO mHealth Technical Evidence Review Group: Guidelines for reporting of health interventions using mobile phones: Mobile Health (mHealth) evidence reporting and assessment (mERA) checklist. BMJ, 352, i1174. https://doi.org/10.1136/bmj.i1174.
Mehl, G., & Labrique, A. (2014). Prioritizing integrated mHealth strategies for universal health coverage. Science (80-.), 345, 1284–1287. https://doi.org/10.1126/science.1258926.
Ricciardi, L., Mostashari, F., Murphy, J., Daniel, J. G., & Siminerio, E. P. (2013). A national action plan to support consumer engagement via e-health. Health Affairs, 32, 376–384. https://doi.org/10.1377/hlthaff.2012.1216.
InsightExpress: Digital Impact on Customer Experience (2013).
Chiuchisan, I., Chiuchisan, I., & Dimian, M. (2015) Internet of things for e-health: An approach to medical applications. In International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) (pp. 1–5). IEEE.
Chiuchisan, I., & Geman, O. (2014). An approach of a decision support and home monitoring system for patients with neurological disorders using internet of things concepts. WSEAS Transaction on Systems, 13, 460–469.
Dorsey, E. R., Vlaanderen, F. P., Engelen, L. J. L. P. G., Kieburtz, K., Zhu, W., Biglan, K. M., et al. (2016). Moving Parkinson care to the home. Movement Disorder, 31, 1258–1262. https://doi.org/10.1002/mds.26744.
Nocera, J., Horvat, M., & Ray, C. T. (2009). Effects of home-based exercise on postural control and sensory organization in individuals with Parkinson disease. Parkinsonism and Related Disorders, 15, 742–745. https://doi.org/10.1016/j.parkreldis.2009.07.002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rovini, E., Santarelli, L., Esposito, D., Maremmani, C., Cavallo, F. (2019). DAPHNE: A Novel e-Health System for the Diagnosis and the Treatment of Parkinson’s Disease. In: Casiddu, N., Porfirione, C., Monteriù, A., Cavallo, F. (eds) Ambient Assisted Living. ForItAAL 2017. Lecture Notes in Electrical Engineering, vol 540. Springer, Cham. https://doi.org/10.1007/978-3-030-04672-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-04672-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04671-2
Online ISBN: 978-3-030-04672-9
eBook Packages: EngineeringEngineering (R0)