Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Shape and Facet Analyses of Alveolar Airspaces of the Lung

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11167))

Included in the following conference series:

  • 1198 Accesses

Abstract

Changes in lung volume during the breathing cycle and also lung diseases are likely to deform even the smallest airspace units, the alveoli. This study reports general ideas to investigate such changes with 3D digital image processing. It comprises morphological characterizations like volume and surface, an evaluation of the angle distribution between facets formed by the septal walls, the number of neighboring alveoli and a shape analysis of the alveolar airspace. The software used is open-source and custom programs are available at:

http://github.com/romangrothausmann/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayachit, U.: The ParaView Guide. Kitware Inc., Clifton Park (2016)

    Google Scholar 

  2. Beare, R., Lehmann, G.: The watershed transform in ITK - discussion and new developments. Insight J. (2006)

    Google Scholar 

  3. Butler, J.P., Oldmixon, E.H., Hoppin, F.G.: Dihedral angles of septal “bend” structures in lung parenchyma. J. Appl. Physiol. 81(4), 1800–1806 (1996)

    Article  Google Scholar 

  4. Cardona, A., Arganda-Carreras, I., Saalfeld, S.: Register Virtual Stack Slices (Fiji). http://imagej.net/Register_Virtual_Stack_Slices

  5. Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave version 4.0.0 manual: a high-level interactive language for numerical computations (2015)

    Google Scholar 

  6. Grothausmann, R.: Providing values of adjacent voxel with vtkDiscreteMarchingCubes. VTK J. (2016)

    Google Scholar 

  7. Grothausmann, R., Beare, R.: Facet analyser: paraview plugin for automated facet detection and measurement of interplanar angles of tomographic objects. MIDAS J. (2015)

    Google Scholar 

  8. Grothausmann, R., et al.: Automated quantitative 3D analysis of faceting of particles in tomographic datasets. Ultramicroscopy 122, 65–75 (2012)

    Article  Google Scholar 

  9. Grothausmann, R., Knudsen, L., Ochs, M., Mühlfeld, C.: Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am. J. Physiol. - Lung Cell. Mol. Physiol. 312(2), L243–L257 (2017)

    Article  Google Scholar 

  10. Grothausmann, R., et al.: Quantitative structural assessment of heterogeneous catalysts by electron tomography. J. Am. Chem. Soc. 133(45), 18161–18171 (2011)

    Article  Google Scholar 

  11. Gundersen, H.: Estimators of the number of objects per area unbiased by edge effects. Microscopica Acta 81(2), 107–117 (1978)

    Google Scholar 

  12. Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220(4), 401–414 (1988)

    Article  Google Scholar 

  13. Hsia, C.C.W., Hyde, D.M., Ochs, M., Weibel, E.R.: An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am. J. Respir. Criti. Care Med. 181(4), 394–418 (2010)

    Article  Google Scholar 

  14. ITK development team: ITK, see [15, 46]. Kitware Inc. http://www.itk.org

  15. Johnson, H.J., McCormick, M.M., Ibáñez, L., the Insight Software Consortium: The ITK Software Guide. Kitware Inc. (2018)

    Google Scholar 

  16. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  17. Klein, S., Staring, M.: elastix, see [16, 37]. Image Sciences Institute, University Medical Center Utrecht. http://elastix.isi.uu.nl/

  18. Knudsen, L., Ochs, M.: A critical comment on a recent publication using parenchymal airspace profiling. Am. J. Respir. Cell Mol. Biol. 57(1), 132–132 (2017)

    Article  Google Scholar 

  19. Legland, D.: MatImage, see [20]. https://github.com/mattools/matImage

  20. Legland, D., Kiêu, K., Devaux, M.-F.: Computation of minkowski measures on 2D and 3D binary images. Image Anal. Ster. 26(2), 83–92 (2007)

    Article  MathSciNet  Google Scholar 

  21. Lehmann, G.: Label object representation and manipulation with ITK. Insight J. (2008)

    Google Scholar 

  22. Lehmann, G., Legland, D.: Efficient n-dimensional surface estimation using crofton formula and run-length encoding. Insight J. (2012)

    Google Scholar 

  23. Lutz, D., et al.: Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am. J. Respir. Cell Mol. Biol. 52(2), 232–243 (2015)

    Article  Google Scholar 

  24. Makiyama, A., Gibson, L., Harris, R., Venegas, J.: Stress concentration around an atelectatic region: a finite element model. Respir. Physiol. Neurobiol. 201, 101–110 (2014)

    Article  Google Scholar 

  25. Marstal, K.: SimpleElastix, see [26]. Image Sciences Institute, University Medical Center Utrecht. http://simpleelastix.github.io/

  26. Marstal, K., Berendsen, F., Staring, M., Klein, S.: SimpleElastix: a userfriendly, multi-lingual library for medical image registration. In: Schnabel, J., Mori, K. (eds.) International Workshop on Biomedical Image Registration (WBIR). IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, Nevada, USA, pp. 574–582 (2016)

    Google Scholar 

  27. McDonough, J.E., Knudsen, L., Wright, A.C., Elliott, W.M., Ochs, M., Hogg, J.C.: Regional differences in alveolar density in the human lung are related to lung height. J. Appl. Physiol. 118(11), 1429–1434 (2015)

    Article  Google Scholar 

  28. Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28(5), 596–608 (1970)

    Article  Google Scholar 

  29. Mercer, R.R., Laco, J.M., Crapo, J.D.: Three-dimensional reconstruction of alveoli in the rat lung for pressure-volume relationships. J. Appl. Physiol. 62(4), 1480–1487 (1987)

    Article  Google Scholar 

  30. Mühlfeld, C., Wrede, C., Knudsen, L., Buchacker, T., Ochs, M., Grothausmann, R.: Recent developments in 3D reconstruction and stereology to study the pulmonary vasculature. Am. J. Physiol. - Lung Cell. Mol. Physiol. (2018)

    Google Scholar 

  31. Ochs, M., et al.: The number of alveoli in the human lung. Am. J. Respi. Crit. Care Med. 169(1), 120–124 (2004)

    Article  Google Scholar 

  32. Oldmixon, E.H., Butler, J.P., Hoppin, F.G.: Dihedral angles between alveolar septa. J. Appl. Physiol. 64(1), 299–307 (1988)

    Article  Google Scholar 

  33. ParaView development team: ParaView, see [1]. Kitware Inc. http://www.paraview.org

  34. Roan, E., Waters, C.M.: What do we know about mechanical strain in lung alveoli? Am. J. Physiol.-Lung Cell. Mol. Physiol. 301(5), L625–L635 (2011)

    Article  Google Scholar 

  35. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware Inc., Clifton Park (2006)

    Google Scholar 

  36. Schürch, S., Bachofen, H., Possmayer, F.: Surface activity in situ, in vivo, and in the captive bubble surfactometer. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 129(1), 195–207 (2001)

    Article  Google Scholar 

  37. Shamonin, D., Bron, E., Lelieveldt, B., Smits, M., Klein, S., Staring, M.: Fast parallel image registration on CPU and GPU for diagnostic classification of alzheimer’s disease. Front. Neuroinformatics 7, 50 (2014)

    Google Scholar 

  38. Sterio, D.C.: The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134(2), 127–136 (1984)

    Article  Google Scholar 

  39. Tange, O.: GNU Parallel - The Command-Line Power Tool, see [40]. http://www.gnu.org/s/parallel

  40. Tange, O.: GNU parallel - the command-line power tool. USENIX Mag. 36(1), 42–47 (2011)

    Google Scholar 

  41. Vasilescu, D.M., et al.: Assessment of morphometry of pulmonary acini in mouse lungs by nondestructive imaging using multiscale microcomputed tomography. Proc. Natl. Acad. Sci. 109(42), 17105–17110 (2012)

    Article  Google Scholar 

  42. VTK development team: VTK, see [35]. Kitware Inc. http://www.vtk.org

  43. Weibel, E.R.: What makes a good lung? Swiss Med. Wkly. 27(139), 375–386 (2009)

    Google Scholar 

  44. Williams, T., Kelley, C.: gnuplot. http://gnuplot.sourceforge.net/docs_4.4/gnuplot.pdf

  45. Wu, Y., Kharge, A.B., Perlman, C.E.: Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion. J. Appl. Physiol. 117(7), 788–796 (2014)

    Article  Google Scholar 

  46. Yoo, T., et al.: Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis. A K Peters Ltd., Natick (2004)

    Book  Google Scholar 

Download references

Acknowledgement

Many thanks go to David Legland for his MatImage [19] support and for helping to use it also within octave [5] and to Sheila Fryk for polishing the English language as native speaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Grothausmann .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 3550 KB)

Supplementary material 2 (pdf 20027 KB)

Appendices

A Catalogue

Fig. 10.
figure 10

Catalog of all analyzed alveoli/cluster

Excerpt from the catalog comprising integral measures (such as in Fig. 4) and all individually analyzed alveoli/cluster (such as in Fig. 3). The full catalog can be found as a separate PDF in the supplementary data.

B Video

Fig. 11.
figure 11

Rotating view of alveolus

Video of the rotating alveolus shown in Fig. 3, visualizing the shape, the fitted ellipsoid (blue), the detected facets, the opening and its lid (transparent gray).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grothausmann, R., Mühlfeld, C., Ochs, M., Knudsen, L. (2018). Shape and Facet Analyses of Alveolar Airspaces of the Lung. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04747-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04746-7

  • Online ISBN: 978-3-030-04747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics