Abstract
Changes in lung volume during the breathing cycle and also lung diseases are likely to deform even the smallest airspace units, the alveoli. This study reports general ideas to investigate such changes with 3D digital image processing. It comprises morphological characterizations like volume and surface, an evaluation of the angle distribution between facets formed by the septal walls, the number of neighboring alveoli and a shape analysis of the alveolar airspace. The software used is open-source and custom programs are available at:
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ayachit, U.: The ParaView Guide. Kitware Inc., Clifton Park (2016)
Beare, R., Lehmann, G.: The watershed transform in ITK - discussion and new developments. Insight J. (2006)
Butler, J.P., Oldmixon, E.H., Hoppin, F.G.: Dihedral angles of septal “bend” structures in lung parenchyma. J. Appl. Physiol. 81(4), 1800–1806 (1996)
Cardona, A., Arganda-Carreras, I., Saalfeld, S.: Register Virtual Stack Slices (Fiji). http://imagej.net/Register_Virtual_Stack_Slices
Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave version 4.0.0 manual: a high-level interactive language for numerical computations (2015)
Grothausmann, R.: Providing values of adjacent voxel with vtkDiscreteMarchingCubes. VTK J. (2016)
Grothausmann, R., Beare, R.: Facet analyser: paraview plugin for automated facet detection and measurement of interplanar angles of tomographic objects. MIDAS J. (2015)
Grothausmann, R., et al.: Automated quantitative 3D analysis of faceting of particles in tomographic datasets. Ultramicroscopy 122, 65–75 (2012)
Grothausmann, R., Knudsen, L., Ochs, M., Mühlfeld, C.: Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am. J. Physiol. - Lung Cell. Mol. Physiol. 312(2), L243–L257 (2017)
Grothausmann, R., et al.: Quantitative structural assessment of heterogeneous catalysts by electron tomography. J. Am. Chem. Soc. 133(45), 18161–18171 (2011)
Gundersen, H.: Estimators of the number of objects per area unbiased by edge effects. Microscopica Acta 81(2), 107–117 (1978)
Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220(4), 401–414 (1988)
Hsia, C.C.W., Hyde, D.M., Ochs, M., Weibel, E.R.: An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am. J. Respir. Criti. Care Med. 181(4), 394–418 (2010)
ITK development team: ITK, see [15, 46]. Kitware Inc. http://www.itk.org
Johnson, H.J., McCormick, M.M., Ibáñez, L., the Insight Software Consortium: The ITK Software Guide. Kitware Inc. (2018)
Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)
Klein, S., Staring, M.: elastix, see [16, 37]. Image Sciences Institute, University Medical Center Utrecht. http://elastix.isi.uu.nl/
Knudsen, L., Ochs, M.: A critical comment on a recent publication using parenchymal airspace profiling. Am. J. Respir. Cell Mol. Biol. 57(1), 132–132 (2017)
Legland, D.: MatImage, see [20]. https://github.com/mattools/matImage
Legland, D., Kiêu, K., Devaux, M.-F.: Computation of minkowski measures on 2D and 3D binary images. Image Anal. Ster. 26(2), 83–92 (2007)
Lehmann, G.: Label object representation and manipulation with ITK. Insight J. (2008)
Lehmann, G., Legland, D.: Efficient n-dimensional surface estimation using crofton formula and run-length encoding. Insight J. (2012)
Lutz, D., et al.: Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am. J. Respir. Cell Mol. Biol. 52(2), 232–243 (2015)
Makiyama, A., Gibson, L., Harris, R., Venegas, J.: Stress concentration around an atelectatic region: a finite element model. Respir. Physiol. Neurobiol. 201, 101–110 (2014)
Marstal, K.: SimpleElastix, see [26]. Image Sciences Institute, University Medical Center Utrecht. http://simpleelastix.github.io/
Marstal, K., Berendsen, F., Staring, M., Klein, S.: SimpleElastix: a userfriendly, multi-lingual library for medical image registration. In: Schnabel, J., Mori, K. (eds.) International Workshop on Biomedical Image Registration (WBIR). IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, Nevada, USA, pp. 574–582 (2016)
McDonough, J.E., Knudsen, L., Wright, A.C., Elliott, W.M., Ochs, M., Hogg, J.C.: Regional differences in alveolar density in the human lung are related to lung height. J. Appl. Physiol. 118(11), 1429–1434 (2015)
Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28(5), 596–608 (1970)
Mercer, R.R., Laco, J.M., Crapo, J.D.: Three-dimensional reconstruction of alveoli in the rat lung for pressure-volume relationships. J. Appl. Physiol. 62(4), 1480–1487 (1987)
Mühlfeld, C., Wrede, C., Knudsen, L., Buchacker, T., Ochs, M., Grothausmann, R.: Recent developments in 3D reconstruction and stereology to study the pulmonary vasculature. Am. J. Physiol. - Lung Cell. Mol. Physiol. (2018)
Ochs, M., et al.: The number of alveoli in the human lung. Am. J. Respi. Crit. Care Med. 169(1), 120–124 (2004)
Oldmixon, E.H., Butler, J.P., Hoppin, F.G.: Dihedral angles between alveolar septa. J. Appl. Physiol. 64(1), 299–307 (1988)
ParaView development team: ParaView, see [1]. Kitware Inc. http://www.paraview.org
Roan, E., Waters, C.M.: What do we know about mechanical strain in lung alveoli? Am. J. Physiol.-Lung Cell. Mol. Physiol. 301(5), L625–L635 (2011)
Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware Inc., Clifton Park (2006)
Schürch, S., Bachofen, H., Possmayer, F.: Surface activity in situ, in vivo, and in the captive bubble surfactometer. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 129(1), 195–207 (2001)
Shamonin, D., Bron, E., Lelieveldt, B., Smits, M., Klein, S., Staring, M.: Fast parallel image registration on CPU and GPU for diagnostic classification of alzheimer’s disease. Front. Neuroinformatics 7, 50 (2014)
Sterio, D.C.: The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134(2), 127–136 (1984)
Tange, O.: GNU Parallel - The Command-Line Power Tool, see [40]. http://www.gnu.org/s/parallel
Tange, O.: GNU parallel - the command-line power tool. USENIX Mag. 36(1), 42–47 (2011)
Vasilescu, D.M., et al.: Assessment of morphometry of pulmonary acini in mouse lungs by nondestructive imaging using multiscale microcomputed tomography. Proc. Natl. Acad. Sci. 109(42), 17105–17110 (2012)
VTK development team: VTK, see [35]. Kitware Inc. http://www.vtk.org
Weibel, E.R.: What makes a good lung? Swiss Med. Wkly. 27(139), 375–386 (2009)
Williams, T., Kelley, C.: gnuplot. http://gnuplot.sourceforge.net/docs_4.4/gnuplot.pdf
Wu, Y., Kharge, A.B., Perlman, C.E.: Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion. J. Appl. Physiol. 117(7), 788–796 (2014)
Yoo, T., et al.: Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis. A K Peters Ltd., Natick (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Appendices
A Catalogue
Excerpt from the catalog comprising integral measures (such as in Fig. 4) and all individually analyzed alveoli/cluster (such as in Fig. 3). The full catalog can be found as a separate PDF in the supplementary data.
B Video
Video of the rotating alveolus shown in Fig. 3, visualizing the shape, the fitted ellipsoid (blue), the detected facets, the opening and its lid (transparent gray).
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Grothausmann, R., Mühlfeld, C., Ochs, M., Knudsen, L. (2018). Shape and Facet Analyses of Alveolar Airspaces of the Lung. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-04747-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04746-7
Online ISBN: 978-3-030-04747-4
eBook Packages: Computer ScienceComputer Science (R0)