Abstract
Estimation of biological sex from an unknown human skeleton is an important step in analyses of forensic and archaeological skeletal cases. Traditionally, the hip bone (pelvic or innominate bone) is preferentially used for this purpose due to its universal sexual dimorphism in shape resulting from its important reproductive functions of the bone in females. Despite much advancement in the field of sex estimation by means of modern morphometric approaches, no practical software had been available for sex estimation utilizing the shape analysis of the hip bone. We developed HIP 1.1 software (High-sensitive Innominate Processing) which is the second functional version of the software designed for morphometric estimation of sex of an unknown skeletal find based on the pelvic bone. The program works with standardized 2D images of bones from a desktop scanner and produces an assignment of sex to each case/skeletal remains using methods of traditional and geometric morphometry. One-dimensional and multi-dimensional statistics computing procedures and graphical procedures are based on the R software, distributed under the GNU (GPL) license, and its extending libraries from various authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, D., Rohlf, F., Slice, D.: Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71(1), 5–16 (2004). https://www.tandfonline.com/doi/abs/10.1080/11250000409356545
Ali, R.S., Maclaughlin, S.M.: Sex identification from the auricular surface of the adult human ilium. Int. J. Osteoarchaeol. 1(1), 57–61 (1991). https://doi.org/10.1002/oa.1390010108
Anastasiou, E., Chamberlain, A.T.: The sexual dimorphism of the sacro-iliac joint: an investigation using geometric morphometric techniques. J. Forensic Sci. 58(s1), S126–S134 (2012). https://doi.org/10.1111/j.1556-4029.2012.02282.x
Bonhomme, V., Picq, S., Gaucherel, C., Claude, J.: Momocs: outline analysis using R. J. Stat. Softw. 56(13), 1–24 (2014). http://www.jstatsoft.org/v56/i13/
Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology (1991)
Brůžek, J., Santos, F., Dutailly, B., Murail, P., Cunha, E.: Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am. J. Phys. Anthropol. 164(2), 440–449 (2017)
Bytheway, J.A.: Ross: a geometric morphometric approach to sex determination of the human adult os coxa. J. Forensic Sci. 55(4), 859–864 (2010). https://doi.org/10.1111/j.1556-4029.2010.01374.x
Correia, H., Balseiro, S., De Areia, M.: Sexual dimorphism in the human pelvis: testing a new hypothesis. HOMO - J. Compar. Hum. Biol. 56(2), 153–160 (2005). http://www.sciencedirect.com/science/article/B7GW4-4GG8W5B-1/2/1f7349a5d67a076e7b026b68bdd8c4a4
Dryden, I.L.: Shapes: Statistical Shape Analysis. R package version 1.2.0. (2017). https://CRAN.R-project.org/package=shapes
Dryden, I., Mardia, K.: Statistical shape analysis. Wiley, Chisester (1998)
Eliopoulos, C., Lagia, A., Manolis, S.: A modern documented human skeletal collection from Greece. HOMO 58(3), 221–228 (2007)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)
Frayer, D.W., Wolpoff, M.H.: Sexual dimorphism. Ann. Rev. Anthropol. 14(1), 429–473 (1985). http://www.annualreviews.org/doi/abs/10.1146/annurev.an.14.100185.002241
Gonzalez, P.N., Bernal, V., Perez, S.I.: Geometric morphometric approach to sex estimation of human pelvis. Forensic Sci. Int. 189(1–3), 68–74 (2009). http://www.sciencedirect.com/science/article/B6T6W-4W8KHN0-1/2/8709c8c3c338b93e8658f093e7cc0076
Jantz, R.L., Ousley, S.D.: FORDISC 3.1.312: Computerized Forensic Discriminant Functions (2005). http://math.mercyhurst.edu/~sousley/Fordisc/
Jurda, M., Urbanová, P., Králík, M.: The post-mortem pressure distortion of human crania uncovered in an early medieval Pohansko (Czech Republic) graveyard. Int. J. Osteoarchaeol. 25(4), 539–549 (2013). https://doi.org/10.1002/oa.2321
Králík, M., Urbanová, P., Klíma, O., Mikešová, T., Wagenknechtová, M., Jungerová, J.: HIP 1.1 - High-Sensitive Innominate Processing (2017). https://sourceforge.net/projects/hip-project/
Leong, A.: Sexual dimorphism of the pelvic architecture: a struggling response to destructive and parsimonious forces by natural and mate selection. McGill J. Med.: MJM 9(1), 61–66 (2006). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687900/
Meloun, M., Militký, J.: Kompendium statistického zpracování dat. Metody řešené úlohy včetně CD. Academia, Praha (2002)
Murail, P., Bruzek, J., Houët, F., Cunha, E.: DSP: a tool for probabilistic sex diagnosis using worldwide variability in hip-bone measurements. Bulletins et mémoires de la Société d’Anthropologie de Paris 17(3–4), 167–176 (2005)
Novotný, V.: Sex determination of the pelvic bone: a systems approach. Anthropologie 24, 197–206 (1986)
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012). http://www.R-project.org/. ISBN 3-900051-07-0
Rohlf, F.: The TPS series of software. Hystrix. It. J. Mamm. 26, 1–4 (2015). http://www.italian-journal-of-mammalogy.it/Issue-1-2015,2849
Slice, D.E., Ross, A.H.: 3D-ID: Geometric Morphometric Classification of Crania for Forensic Scientists (2009). http://www.3d-id.org/
Urbanová, P., Králík, M.: COLIPR 1.5.2 (2008). http://www.sci.muni.cz/lamorfa/veda-a-vyzkum#projekty
Vacca, E., Novotný, V., Vančata, V., Delfino, V.: Shape analysis of incisura ischiadica major in sexing the human pelvis. Anthropologie 35, 291–301 (1997)
Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2017). https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
Weihs, C., Ligges, U., Luebke, K., Raabe, N.: klaR Analyzing German Business Cycles. In: Baier, D., Decker, R., Schmidt-Thieme, L. (eds.) Data Analysis and Decision Support, pp. 335–343. Springer, Berlin (2005). https://doi.org/10.1007/3-540-28397-8_36
Acknowledgements
For access to documented reference samples and versatile help let us thank to Miloš Grim (Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, CZ), Ondřej Naňka (Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, CZ), Ladislava Horáčková (Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, CZ), Sotiris K. Manolis (University of Athens, Greece), and Constantinos Eliopoulos (Liverpool John Moores University, GB). For assistance with organization and further cooperation we thank Tomáš Mořkovský (Department of Anthropology, Faculty of Science, Masaryk University) and Michaela Králíková (Museum of Vyškov Region, Bučovice). The computer program was created thanks to the financial support of the Higher Education Development Fund (project FRVS/2034/2012) and MU Development Fund (project UNI/FR/0284/2014).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Králík, M., Klíma, O., Urbanová, P., Polcerová, L., Čuta, M. (2018). Morphometric Sex Estimation from the Hip Bone by Means of the HIP 1.1 Software. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-04747-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04746-7
Online ISBN: 978-3-030-04747-4
eBook Packages: Computer ScienceComputer Science (R0)