Abstract
The advantage of co-simulation with respect to traditional single-paradigm simulation lies mainly in the modeling flexibility it affords in composing large models out of submodels, each expressed in the most appropriate formalism. One aspect of this flexibility is the modularity of the co-simulation framework, which allows developers to replace each sub-model with a new version, possibly based on a different formalism or a different simulator, without changing the rest of the co-simulation. This paper reports on the replacement of a sub-model in a co-simulation built on the INTO-CPS framework. Namely, an existing co-simulation of a water tank, available in the INTO-CPS distribution, has been modified by replacing the tank sub-model with a sub-model built as a Stochastic Activity Network simulated on Möbius, a tool used to perform statistical analyses of systems with stochastic behavior. This work discusses aspects of this redesign, including the necessary modifications to the Möbius sub-model. In this still preliminary work, the Stochastic Activity Network features related to stochastic models have not been used, but a simple deterministic model has proved useful in indicating an approach to the integration of Stochastic Activity Networks into a co-simulation framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engineering at work: the challenges for designing mechatronic products. Eng. Comput. 29(3), 389–408 (2013). https://doi.org/10.1007/s00366-012-0286-6
Bernardeschi, C., Cassano, L., Domenici, A., Sterpone, L.: ASSESS: a simulator of soft errors in the configuration memory of SRAM-based FPGAs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(9), 1342–1355 (2014). https://doi.org/10.1109/TCAD.2014.2329419
Bernardeschi, C., Cassano, L., Domenici, A.: Failure probability and fault observability of SRAM-FPGA systems. In: International Conference on Field Programmable Logic and Applications (FPL2011), pp. 385–388. IEEE, Sep 2011. https://doi.org/10.1109/FPL.2011.75
Bernardeschi, C., Domenici, A.: Verifying safety properties of a nonlinear control by interactive theorem proving with the Prototype Verification System. Inform. Process. Lett. 116(6), 409–415 (2016). https://doi.org/10.1016/j.ipl.2016.02.001
Bernardeschi, C., Domenici, A., Masci, P.: A PVS-simulink integrated environment for model-based analysis of cyber-physical systems. IEEE Trans. Softw. Eng. 44(6), 512–533 (2018). https://doi.org/10.1109/TSE.2017.2694423
Blochwitz, T., et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th International MODELICA Conference, 3–5 September 2012, Munich, Germany, pp. 173–184. No. 76 in Linköping Electronic Conference Proceedings. Linköping University Electronic Press (2012). https://doi.org/10.3384/ecp12076173
Buchanan, C., Keefe, K.: Simulation debugging and visualization in the Möbius modeling framework. In: Norman, G., Sanders, W. (eds.) Quantitative Evaluation of Systems, pp. 226–240. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_18
Christiansen, M., Larsen, P., Nyholm Jørgensen, R.: Robotic design choice overview using co-simulation and design space exploration. Robotics 4, 398–421 (2015). https://doi.org/10.3390/robotics4040398
Clark, G., et al.: The Möbius modeling tool. In: 9th International Workshop on Petri Nets and Performance Models, pp. 241–250. IEEE Computer Society Press, Aachen, September 2001. https://doi.org/10.1109/PNPM.2001.953373
Deavours, D.D., et al.: The Möbius framework and its implementation. IEEE Trans. Softw. Eng. 28(10), 956–969 (2002). https://doi.org/10.1109/TSE.2002.1041052
Fitzgerald, J., Gamble, C., Larsen, P., Pierce, K., Woodcock, J.: Cyber-physical systems design: formal foundations, methods and integrated tool chains. In: Proceedings of the 2015 IEEE/ACM 3rd FME Workshop on Formal Methods in Software Engineering (FormaliSE), pp. 40–46. IEEE (2015). https://doi.org/10.1109/FormaliSE.2015.14
Ford, M.D., Keefe, K., LeMay, E., Sanders, W.H., Muehrcke, C.: Implementing the ADVISE security modeling formalism in Möbius. In: 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 1–8, June 2013. https://doi.org/10.1109/DSN.2013.6575362
Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic fault trees. In: Annual Reliability and Maintainability Symposium, pp. 57–63. IEEE Computer Society Press (1997). https://doi.org/10.1109/RAMS.1997.571665
Iacono, M., Gribaudo, M.: Element based semantics in multi formalism performance models. In: 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 413–416, August 2010. https://doi.org/10.1109/MASCOTS.2010.54
Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical systems: the INTO-CPS project. In: 2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6, April 2016. https://doi.org/10.1109/CPSData.2016.7496424
Lawrence, D.P.Y., Gomes, C., Denil, J., Vangheluwe, H., Buchs, D.: Coupling Petri nets with deterministic formalisms using co-simulation. In: Proceedings of the Symposium on Theory of Modeling & Simulation, TMS-DEVS 2016, pp. 6:1–6:8. Society for Computer Simulation International, San Diego (2016). https://doi.org/10.23919/TMS.2016.7918812
Liu, J., Jiang, K., Wang, X., Cheng, B., Du, D.: Improved co-simulation with event detection for stochastic behaviors of CPSs. In: 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC). vol. 1, pp. 209–214 , June 2016. https://doi.org/10.1109/COMPSAC.2016.133
Mancini, T., Mari, F., Massini, A., Melatti, I., Merli, F., Tronci, E.: System level formal verification via model checking driven simulation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_21
Nelli, M., Bondavalli, A., Simoncini, L.: Dependability modeling and analysis of complex control systems: An application to railway interlocking. In: Hlawiczka, A., Silva, J.G., Simoncini, L. (eds.) EDCC 1996. LNCS, vol. 1150, pp. 91–110. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61772-8_32
Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid prototyping device user interfaces in PVS. In: FMIS2013, 5th International Workshop on Formal Methods for Interactive Systems, London, UK, 24 June 2013 (2013). https://doi.org/10.14279/tuj.eceasst.69.963.944
Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: Combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Berlin (1996). https://doi.org/10.1007/3-540-61474-5_91
Palmieri, M., Bernardeschi, C., Masci, P.: Co-simulation of semi-autonomous systems: the line follower robot case study. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 423–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_29
Payne, R., et al.: Examples Compendium 2. Tech. report D3.5, INTO-CPS Deliverable, December 2008
Peccoud, J., Courtney, T., Sanders, W.H.: Möbius: an integrated discrete-event modeling environment. Bioinformatics 23(24), 3412–3414 (2007). https://doi.org/10.1093/bioinformatics/btm517
Sanders, W.H.: Integrated frameworks for multi-level and multi-formalism modeling. In: Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331), pp. 2–9 (1999). https://doi.org/10.1109/PNPM.1999.796527
Sanders, W., Courtney, T., Deavours, D., Daly, D., Derisavi, S., Lam, V.: Multi-formalism and multi-solution-method modeling frameworks: The Möbius approach. In: Proceedings of Symposium on Performance Evaluation - Stories and Perspectives, Vienna, Austria, December 2003, pp. 241–256 (2003)
Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts. In: Brinksma, E., Hermanns, H., Katoen, J.P. (eds.) EEF School 2000. LNCS, vol. 2090. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44667-2_9
Srivastava, R., Peterson, M.S., Bentley, W.E.: Stochastic kinetic analysis of the Escherichia coli stress circuit using \(\sigma ^{32}\)-targeted antisense. Biotechnol. Bioeng. 75(1), 120–129 (2001). https://doi.org/10.1002/bit.1171
Tsavachidou, D., Liebman, M.N.: Modeling and simulation of pathways in menopause. J. Am. Med. Inform. Assoc. 9(5), 461–471 (2002). https://doi.org/10.1197/jamia.M1103
Vangheluwe, H.: Foundations of modelling and simulation of complex systems. Electronic Communications of the EASST 10 (2008). https://doi.org/10.14279/tuj.eceasst.10.162.148
Acknowledgments
The authors wish to thank the anonymous referees for their helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bernardeschi, C., Domenici, A., Palmieri, M. (2018). Towards Stochastic FMI Co-Simulations: Implementation of an FMU for a Stochastic Activity Networks Simulator. In: Mazzara, M., Ober, I., Salaün, G. (eds) Software Technologies: Applications and Foundations. STAF 2018. Lecture Notes in Computer Science(), vol 11176. Springer, Cham. https://doi.org/10.1007/978-3-030-04771-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-04771-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04770-2
Online ISBN: 978-3-030-04771-9
eBook Packages: Computer ScienceComputer Science (R0)