Abstract
Using a stochastic synchronous dynamical system (SyDS) as a formal model, we study the problem of inferring local behaviors of nodes in networked social systems. We focus on probabilistic threshold functions as local functions. We use an active query mechanism where a user interacts with the system by submitting queries. We develop an efficient algorithm that infers the probabilistic threshold functions using the responses to the queries. Our algorithm generates provably good query sets. We also present experimental results to demonstrate the performance of our algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For convenience, we use \(t_v\) and t(v) interchangeably to denote the threshold of a node v.
- 2.
When the system is deterministic, the successor of a configuration is unique. In probabilistic systems, the successor may not be unique.
- 3.
A complete query set Q is a set of queries q such that for every \(v \in V\) and for every value \(j \in [0,d_v+1]\), there exists a \(q \in Q\) such that score(v, q)\(=j\).
References
Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Inferring local transition functions of discrete dynamical systems from observations of system behavior. Theor. CS. 679, 126–144 (2017)
Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Learning the behavior of a dynamical system via a ‘20 questions’ approach. In: Proceedings of AAAI, pp. 4630–4637 (2018)
Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. Theor. Comput. Sci. 412(30), 3932–3946 (2011)
Berry, G., Cameron, C.J.: A new method to reduce overestimation of thresholds with observational network data (2017). arXiv:1702.02700v1 [cs.SI]
Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010)
González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 7 (2011)
Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: Proceedings of ACM Interantional Conference on Web Search and Data Mining (WSDM 2010), pp. 241–250 (2010)
Granovetter, M.: Threshold models of collective behavior. Am. J. Soc. 83, 1420–1443 (1978)
Kazemi, E., Chen, L., Dasgupta, S., Karbasi, A.: Comparison based learning from weak oracles (2018). Arxiv:1802.06942v1 [cs.LG]
Kearns, M.J., Vazirani, V.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)
Kleinberg, J., Mullainathan, S., Ugander, J.: Comparison-based choices (2017). arXiv:1705.05735v1 [cs.DS]
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data
Macy, M., Willer, R.: From factors to actors: computational sociology and agent-based modeling. Ann. Rev. Sociol. 28, 143–166 (2002)
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)
Mortveit, H., Reidys, C.: An Introduction to Sequential Dynamical Systems. Springer Science & Business Media, New York (2007)
Murphy, K.P.: Passively learning finite automata. Technical Report, 96-04-017, Santa Fe Institute, Santa Fe, NM (1996)
Romero, D., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704. ACM (2011)
Rosenthal, S.B., Twomey, C.R., Hartnett, A.T., Wu, H.S., Couzin, I.D.: Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112(15), 4690–4695 (2015)
Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for Independent Cascade model. In: Proceedings of Knowledge-Based Intelligent Information and Engineering Sytems (KES 2008), pp. 67–75 (2008)
Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99, 5766–5771 (2002)
Acknowledgements
We thank the referees for providing valuable suggestions. We also thank our computer systems administrators for their help: Dominik Borkowski, William Miles Gentry, Jeremy Johnson, William Marmagas, Douglas McMaster, Kevin Shinpaugh, and Robert Wills. This work has been partially supported by DARPA Cooperative Agreement D17AC00003 (NGS2), DTRA CNIMS (Contract HDTRA1-11-D-0016-0001), NSF DIBBS Grant ACI-1443054 and NSF BIG DATA Grant IIS-1633028.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E. (2019). Using Active Queries to Learn Local Stochastic Behaviors in Social Networks. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-05414-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05413-7
Online ISBN: 978-3-030-05414-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)