Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Active Queries to Learn Local Stochastic Behaviors in Social Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Abstract

Using a stochastic synchronous dynamical system (SyDS) as a formal model, we study the problem of inferring local behaviors of nodes in networked social systems. We focus on probabilistic threshold functions as local functions. We use an active query mechanism where a user interacts with the system by submitting queries. We develop an efficient algorithm that infers the probabilistic threshold functions using the responses to the queries. Our algorithm generates provably good query sets. We also present experimental results to demonstrate the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For convenience, we use \(t_v\) and t(v) interchangeably to denote the threshold of a node v.

  2. 2.

    When the system is deterministic, the successor of a configuration is unique. In probabilistic systems, the successor may not be unique.

  3. 3.

    A complete query set Q is a set of queries q such that for every \(v \in V\) and for every value \(j \in [0,d_v+1]\), there exists a \(q \in Q\) such that score(v,  q)\(=j\).

References

  1. Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Inferring local transition functions of discrete dynamical systems from observations of system behavior. Theor. CS. 679, 126–144 (2017)

    Article  MathSciNet  Google Scholar 

  2. Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Learning the behavior of a dynamical system via a ‘20 questions’ approach. In: Proceedings of AAAI, pp. 4630–4637 (2018)

    Google Scholar 

  3. Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. Theor. Comput. Sci. 412(30), 3932–3946 (2011)

    Article  MathSciNet  Google Scholar 

  4. Berry, G., Cameron, C.J.: A new method to reduce overestimation of thresholds with observational network data (2017). arXiv:1702.02700v1 [cs.SI]

  5. Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010)

    Article  Google Scholar 

  6. González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 7 (2011)

    Google Scholar 

  7. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: Proceedings of ACM Interantional Conference on Web Search and Data Mining (WSDM 2010), pp. 241–250 (2010)

    Google Scholar 

  8. Granovetter, M.: Threshold models of collective behavior. Am. J. Soc. 83, 1420–1443 (1978)

    Google Scholar 

  9. Kazemi, E., Chen, L., Dasgupta, S., Karbasi, A.: Comparison based learning from weak oracles (2018). Arxiv:1802.06942v1 [cs.LG]

  10. Kearns, M.J., Vazirani, V.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  11. Kleinberg, J., Mullainathan, S., Ugander, J.: Comparison-based choices (2017). arXiv:1705.05735v1 [cs.DS]

  12. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data

  13. Macy, M., Willer, R.: From factors to actors: computational sociology and agent-based modeling. Ann. Rev. Sociol. 28, 143–166 (2002)

    Article  Google Scholar 

  14. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  15. Mortveit, H., Reidys, C.: An Introduction to Sequential Dynamical Systems. Springer Science & Business Media, New York (2007)

    MATH  Google Scholar 

  16. Murphy, K.P.: Passively learning finite automata. Technical Report, 96-04-017, Santa Fe Institute, Santa Fe, NM (1996)

    Google Scholar 

  17. Romero, D., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704. ACM (2011)

    Google Scholar 

  18. Rosenthal, S.B., Twomey, C.R., Hartnett, A.T., Wu, H.S., Couzin, I.D.: Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112(15), 4690–4695 (2015)

    Article  Google Scholar 

  19. Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for Independent Cascade model. In: Proceedings of Knowledge-Based Intelligent Information and Engineering Sytems (KES 2008), pp. 67–75 (2008)

    Google Scholar 

  20. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99, 5766–5771 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for providing valuable suggestions. We also thank our computer systems administrators for their help: Dominik Borkowski, William Miles Gentry, Jeremy Johnson, William Marmagas, Douglas McMaster, Kevin Shinpaugh, and Robert Wills. This work has been partially supported by DARPA Cooperative Agreement D17AC00003 (NGS2), DTRA CNIMS (Contract HDTRA1-11-D-0016-0001), NSF DIBBS Grant ACI-1443054 and NSF BIG DATA Grant IIS-1633028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E. (2019). Using Active Queries to Learn Local Stochastic Behaviors in Social Networks. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_20

Download citation

Publish with us

Policies and ethics