Abstract
Kernel methods are of growing importance in neuroscience research. As an elegant extension of linear methods, they are able to model complex non-linear relationships. However, since the kernel matrix grows with data size, the training of classifiers is computationally demanding in large datasets. Here, a technique developed for linear classifiers is extended to kernel methods: In linearly separable data, replacing sets of instances by their averages improves signal-to-noise ratio (SNR) and reduces data size. In kernel methods, data is linearly non-separable in input space, but linearly separable in the high-dimensional feature space that kernel methods implicitly operate in. It is shown that a classifier can be efficiently trained on instances averaged in feature space by averaging entries in the kernel matrix. Using artificial and publicly available data, it is shown that kernel averaging improves classification performance substantially and reduces training time, even in non-linearly separable data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de Sá, J., Pereira-Leite, L.: Sisporto 2.0: a program for automated analysis of cardiotocograms. J. Matern. Fetal Med. 9(5), 311–318 (2000). https://doi.org/10.1002/1520-6661(200009/10)9:5<311::AID-MFM12>3.0.CO;2-9
Chang, C.C, Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
Choudhury, S., Fishman, J.R., McGowan, M.L., Juengst, E.T.: Big data, open science and the brain: lessons learned from genomics. Front. Hum. Neurosci. 8, 239 (2014). https://doi.org/10.3389/fnhum.2014.00239
Cichy, R.M., Pantazis, D.: Multivariate pattern analysis of MEG and EEG: a comparison of representational structure in time and space. NeuroImage 158, 441–454 (2017). https://doi.org/10.1016/j.neuroimage.2017.07.023
Cichy, R.M., Ramirez, F.M., Pantazis, D.: Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans? NeuroImage 121, 193–204 (2015). https://doi.org/10.1016/j.neuroimage.2015.07.011
Danziger, S.A., et al.: Predicting positive p53 cancer rescue regions using most informative positive (MIP) active learning. PLoS Comput. Biol. 5(9), e1000498 (2009). https://doi.org/10.1371/journal.pcbi.1000498
Dima, D.C., Perry, G., Singh, K.D.: Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception. NeuroImage 179, 102–116 (2018). https://doi.org/10.1016/J.NEUROIMAGE.2018.06.033
Gonzalez-Moreno, A., et al.: Signal-to-noise ratio of the MEG signal after preprocessing. J. Neurosci. Methods 222, 56–61 (2014). https://doi.org/10.1016/J.JNEUMETH.2013.10.019
Hainmueller, J., Hazlett, C., Alvarez, R.M.: Kernel regularized least squares: reducing misspecification bias with a flexible and interpretable machine learning approach. Polit. Anal. 22(2), 143–168 (2014). https://doi.org/10.1093/pan/mpt019
Hinton, G.E.: Machine learning for neuroscience. Neural Syst. Circ. 1(1), 12 (2011). https://doi.org/10.1186/2042-1001-1-12
Hwang, H.J., et al.: A gaze independent brain-computer interface based on visual stimulation through closed eyelids. Sci. Rep. 5, 15890 (2015). https://doi.org/10.1038/srep15890
Jäkel, F., Schölkopf, B., Wichmann, F.A.: Does cognitive science need kernels? Trends Cogn. Sci. 13, 381–388 (2009). https://www.sciencedirect.com/science/article/pii/S1364661309001430
Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012). https://doi.org/10.1016/j.neubiorev.2012.01.004
Schölkopf, B., Smola, A.J.: A short introduction to learning with kernels. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. Lecture Notes in Computer Science, vol. 2600, pp. 41–64. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36434-X_2
Schrouff, J., et al.: PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics 11(3), 319–337 (2013). https://doi.org/10.1007/s12021-013-9178-1
Schrouff, J., Mourão-Miranda, J., Phillips, C., Parvizi, J.: Decoding intracranial EEG data with multiple kernel learning method. J. Neurosci. Methods 261, 19–28 (2016). https://doi.org/10.1016/J.JNEUMETH.2015.11.028
Treder, M.S., Purwins, H., Miklody, D., Sturm, I., Blankertz, B.: Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification. J. Neural Eng. 11(2), 026009 (2014). https://doi.org/10.1088/1741-2560/11/2/026009
Wang, X., Xing, E.P., Schaid, D.J.: Kernel methods for large-scale genomic data analysis. Brief. Bioinf. 16(2), 183–192 (2015). https://doi.org/10.1093/bib/bbu024
Weinstein, J.N., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013). https://doi.org/10.1038/ng.2764
Youssofzadeh, V., McGuinness, B., Maguire, L.P., Wong-Lin, K.: Multi-kernel learning with dartel improves combined MRI-PET classification of Alzheimer’s disease in AIBL data: group and individual analyses. Front. Hum. Neurosci. 11, 380 (2017). https://doi.org/10.3389/fnhum.2017.00380
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Treder, M.S. (2018). Improving SNR and Reducing Training Time of Classifiers in Large Datasets via Kernel Averaging. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-05587-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05586-8
Online ISBN: 978-3-030-05587-5
eBook Packages: Computer ScienceComputer Science (R0)