Abstract
The strong demand for video analytics is largely due to the widespread application of CCTV. Perfectly encoding moving objects and scenes with different sizes and complexity in an unsupervised manner is still a challenge and seriously affects the quality of video prediction and subsequent analysis. In this paper, we introduce adversarial training to improve DrNet which disentangles a video with stationary scene and moving object representations, while taking the tiny objects and complex scene into account. These representations can be used for subsequent industrial applications such as vehicle density estimation, video retrieval, etc. Our experiment on LASIESTA database confirms the validity of this method in both reconstruction and prediction performance. Meanwhile, we propose an experiment that vanishes one of the codes and reconstructs the images by concatenating these zero and non-zero codes. This experiment separately evaluates the moving object and scene coding quality and shows that the adversarial training achieves a significant reconstruction quality in visual effect, despite of complex scene and tiny object.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baraldi, L., Grana, C., Cucchiara, R.: A deep siamese network for scene detection in broadcast videos. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 1199–1202. ACM (2015)
Boureau, Y.l., Cun, Y.L.: Sparse feature learning for deep belief networks. In: Advances in Neural Information Processing Systems, pp. 1185–1192 (2008)
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)
Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal autoencoder. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017, Part II. LNCS, vol. 10262, pp. 189–196. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59081-3_23
Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 539–546. IEEE (2005)
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)
Cuevas, C., Yáñez, E.M., GarcÃa, N.: Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput. Vis. Image Underst. 152, 103–117 (2016)
Denton, E.L.: Unsupervised learning of disentangled representations from video. In: Advances in Neural Information Processing Systems, pp. 4414–4423 (2017)
Dumoulin, V., et al.: Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hsieh, J.T., Liu, B., Huang, D.A., Fei-Fei, L., Niebles, J.C.: Learning to Decompose and Disentangle Representations for Video Prediction. arXiv preprint arXiv:1806.04166 (2018)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015)
Liou, C.Y., Cheng, W.C., Liou, J.W., Liou, D.R.: Autoencoder for words. Neurocomputing 139, 84–96 (2014)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)
Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: Advances in Neural Information Processing Systems, pp. 5040–5048 (2016)
McLaughlin, N., Martinez del Rincon, J., Miller, P.: Recurrent convolutional network for video-based person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1325–1334(2016)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014)
Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Advances in Neural Information Processing Systems, pp. 3546–3554 (2015)
Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 833–840. Omnipress (2011)
Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems. pp. 3856–3866 (2017)
Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 32–36. IEEE (2004)
Song, J., Zhang, H., Li, X., Gao, L., Wang, M., Hong, R.: Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans. Image Process. 27(7), 3210–3221 (2018)
Tran, L., Yin, X., Liu, : X.: Disentangled representation learning GAN for pose-invariant face recognition. In: CVPR, vol. 3, p. 7 (2017)
Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033 (2017)
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM(2008)
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, pp. 613–621 (2016)
Yingzhen, L., Mandt, S.: Disentangled sequential autoencoder. In: International Conference on Machine Learning, pp. 5656–5665 (2018)
Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2015)
Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_1
Zhao, J., Mathieu, M., Goroshin, R., LeCun, Y.: Stacked What-Where Auto-encoders. arXiv:1506.02351 [cs, stat], June 2015
Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, R. et al. (2019). Adversarial Training for Video Disentangled Representation. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-05716-9_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05715-2
Online ISBN: 978-3-030-05716-9
eBook Packages: Computer ScienceComputer Science (R0)