Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stochastic Local Search Algorithms for the Direct Aperture Optimisation Problem in IMRT

  • Conference paper
  • First Online:
Hybrid Metaheuristics (HM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11299))

Included in the following conference series:

Abstract

In this paper, two heuristic algorithms are proposed to solve the direct aperture optimisation problem (DAO) in radiation therapy for cancer treatment. In the DAO problem, the goal is to find a set of deliverable aperture shapes and intensities so we can irradiate the tumor according to a medical prescription without producing any harm to the surrounding healthy tissues. Unlike the traditional two-step approach used in intensity modulated radiation therapy (IMRT) where the intensities are computed and then the apertures shapes are determined by solving a sequencing problem, in the DAO problem, constraints associated to the number of deliverable aperture shapes as well as physical constraints are taken into account during the intensities optimisation process. Thus, we do not longer need any leaves sequencing procedure after solving the DAO problem. We try our heuristic algorithms on a prostate case and compare the obtained treatment plan to the one obtained using the traditional two-step approach. Results show that our algorithms are able to find treatment plans that are very competitive when considering the number of deliverable aperture shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    i.e., only beamlets \(x_{i}\) that belong to a beam angle in \(\mathscr {A}\) are allowed to be greater than zero.

  2. 2.

    Even disregarding the impact on the clinical schedule, long treatment times are uncomfortable for the patients and carry an increased risk of intra-fraction motion, which may compromise plan quality [9].

References

  1. Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition of integer matrices and multileaf collimator sequencing. Discrete Appl. Math. 152(1–3), 6–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broderick, M., Leech, M., Coffey, M.: Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans. Radiat. Oncol. 4(1), 8 (2009)

    Article  Google Scholar 

  3. Cabrera, G.G., Ehrgott, M., Mason, A., Raith, A.: A matheuristic approach to solve the multiobjective beam angle optimization problem in intensity-modulated radiation therapy. Int. Trans. Oper. Res. 25(1), 243–268 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabrera-Guerrero, G., Lagos, C., Cabrera, E., Johnson, F., Rubio, J.M., Paredes, F.: Comparing local search algorithms for the beam angles selection in radiotherapy. IEEE Access 6, 23701–23710 (2018)

    Article  Google Scholar 

  5. Cabrera-Guerrero, G., Mason, A.J., Raith, A., Ehrgott, M.: Pareto local search algorithms for the multi-objective beam angle optimisation problem. J. Heuristics 24(2), 205–238 (2018)

    Article  Google Scholar 

  6. Cabrera-Guerrero, G., Rodriguez, N., Lagos, C., Cabrera, E., Johnson, F.: Local search algorithms for the beam angles selection problem in radiotherapy. Math. Probl. Eng. 2018(1), 1–9 (2018)

    Article  Google Scholar 

  7. Deasy, J., Blanco, A., Clark, V.: CERR: a computational environment for radiotherapy research. Med. Phys. 30(5), 979–985 (2003)

    Article  Google Scholar 

  8. Descovich, M., Fowble, B., Bevan, A., Schechter, N., Park, C., Xia, P.: Comparison between hybrid direct aperture optimized intensity-modulated radiotherapy and forward planning intensity-modulated radiotherapy for whole breast irradiation. Int. J. Radiat. Oncol. Biol. Phys. 76, 91–99 (2009)

    Article  Google Scholar 

  9. Dzierma, Y., Nuesken, F.G., Fleckenstein, J., Melchior, P., Licht, N.P., Rübe, C.: Comparative planning of flattening-filter-free and flat beam imrt for hypopharynx cancer as a function of beam and segment number. PloS One 9(4), e94371 (2014)

    Article  Google Scholar 

  10. Ehrgott, M., Güler, C., Hamacher, H.W., Shao, L.: Mathematical optimization in intensity modulated radiation therapy. Ann. Oper. Res. 175(1), 309–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, S., Williams, M.: Clinical evaluation of direct aperture optimization when applied to head-and-neck IMRT. Med. Dosim. 33(1), 86–92 (2008)

    Article  Google Scholar 

  12. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  13. Shepard, D.M., Ferris, M.C., Olivera, G.H., Mackie, T.R.: Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41(1), 721–744 (1999)

    Article  MATH  Google Scholar 

  14. Wächter, A., Biegler, L.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeng, X., Gao, H., Wei, X.: Rapid direct aperture optimization via dose influence matrix based piecewise aperture dose model. PLOS One 13(5), 1–11 (2018)

    Google Scholar 

Download references

Acknowledgement

Guillermo Cabrera-Guerrero wishes to thank FONDECYT/INICIACION/11170456 project for partially support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Pérez Cáceres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez Cáceres, L., Araya, I., Soto, D., Cabrera-Guerrero, G. (2019). Stochastic Local Search Algorithms for the Direct Aperture Optimisation Problem in IMRT. In: Blesa Aguilera, M., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds) Hybrid Metaheuristics. HM 2019. Lecture Notes in Computer Science(), vol 11299. Springer, Cham. https://doi.org/10.1007/978-3-030-05983-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05983-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05982-8

  • Online ISBN: 978-3-030-05983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics