Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hyperspectral Estimation of Leaf Area Index of Winter Wheat Based on Akaike’s Information Criterion

  • Conference paper
  • First Online:
Computer and Computing Technologies in Agriculture X (CCTA 2016)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 509))

Abstract

Leaf Area Index (LAI) is an important parameter for assessing the crop growth and winter wheat yield prediction. The objectives of this study were(1) to establish and verify a model for the LAI of winter wheat, where the regression models, extended the Grey Relational Analysis (GRA), Akaike’s Information Criterion (AIC), Least Squares Support Vector Machine (LSSVM) and (ii) to compare the performance of proposed models GRA-LSSVM-AIC. Spectral reflectance of leaves and concurrent LAI parameters of samples were acquired in Tongzhou and Shunyi districts, Beijing city, China, during 2008/2009 and 2009/2010 winter wheat growth seasons. In the combined model, GRA was used to analyse the correlation between vegetation index and LAI, LSSVM was used to conduct regression analysis according to the GRA for different vegetation index order of the number of independent variables, AIC was used to select the optimal models in LSSVM models. Our results indicated that GRA-LSSVM-AIC optimal models came out robust LAI evaluation (R = 0.81 and 0.80, RMSE = 0.765 and 0.733, individually). The GRA-LSSVM-AIC had higher applicability between different years and achieved prediction of LAI estimation of winter wheat between regional and annual levels, and had a wide range of potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., Zhao, C., Huang, W., et al.: Quantitative Remote Sensing and its Application in Agriculture. Thomson Learning Press, Beijing (2008)

    Google Scholar 

  2. Pinter, P.J., et al.: Remote sensing for crop management. Photogramm. Eng. Remote Sens. 69, 647–664 (2003)

    Article  Google Scholar 

  3. Maki, M., Homma, K.: Empirical regression models for estimating multiyear leaf area index of rice from several vegetation indices at the field scale. Remote Sens. 6, 4764–4779 (2014)

    Article  Google Scholar 

  4. Potithep, S., Nagai, S., Nasahara, K.N., Muraoka, H., Suzuki, R.: Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest. Agric. For. Meteorol. 169, 148–155 (2013)

    Article  Google Scholar 

  5. Inoue, Y., Iwasaki, K.: Spectral estimation of radiation absorptance and leaf area index in corn canopies as affected by canopy architecture and growth stage. Jpn. J. Crop Sci. 60, 578–580 (1991)

    Article  Google Scholar 

  6. Li, F., et al.: Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 11, 335–357 (2010)

    Article  Google Scholar 

  7. Xie, Q., Huang, W., Liang, D., et al.: Comparative study on remote sensing invertion methods for estimating winter wheat leaf area index. Spectrosc. Spectr. Anal. 34(5), 489–493 (2014)

    Google Scholar 

  8. Lin, H., Liang, L., Zhang, L., et al.: Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 29(11), 139–146 (2013)

    Google Scholar 

  9. Liang, H., Yang, M., Zhang, L., et al.: Chlorophyll content inversion with hyperspectral technology for wheat canopy based on support vector regression algorithm. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 28(20), 162–171 (2012)

    Google Scholar 

  10. Cai, Q., Jiang, J., Tao, L., et al.: Estimation of winter wheat leaf area index with joint principal component analysis and least squares support vector model. J. Triticeae Crop. 34(9), 1292–1296 (2014)

    Google Scholar 

  11. Jin, X.L., Xu, X.G., Wang, J.H., et al.: Hyperspectral estimation of leaf water content for winter wheat based on grey relational analysis. TSpectroscopy Spectr. Anal. 32(11), 103–3106 (2012)

    Google Scholar 

  12. Jin, X., Xu, X., Song, X., et al.: Estimation of leaf water content in winter wheat using grey relational analysis – partial least squares modeling with hyperspectral data. Agron. J. 105(5), 1085–1392 (2013)

    Article  Google Scholar 

  13. Xia, T., Wu, W., Zho, Q., et al.: Comparison of two inversion methods for winter wheat leaf area index based on hyperspectral remote sensing. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 29(3), 139–147 (2013). (in Chinese with English abstract)

    Google Scholar 

  14. Lee, K.-S., Cohen, W.B., Kennedy, R.E., Maiersperger, T.K., Gower, S.T.: Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens. Environ. 91, 508–520 (2004)

    Article  Google Scholar 

  15. Shunfa, J., Yibao, W., Yuli, X., et al.: AIC principle and its application in the polynomial models of the crop yield. Acta Agric. Shanghai 1(3), 73–78 (1985)

    Google Scholar 

  16. Li, Z., Xu, X., Jin, X., et al.: Remote sensing prediction of winter wheat protein content based on nitrogen translocation and GRA-PLS method. Sci. Agric. Sin. 47(19), 3780–3790 (2014)

    Google Scholar 

  17. Akaike, H.: Problem of control and information. In: Petrov, B.N., Csaki, F., (eds.) Proceedings of 2nd International Symposium on Information Theory, pp. 267–281. Akademina kiado, Budapest (1973)

    Google Scholar 

  18. Deering, D.W., Harlan, J.C.: Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. Texas A & M University, Remote Sensing Center (1974)

    Google Scholar 

  19. Pearson, R.L., Miller, D.L.: Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In: Proceedings of the English International Symposium on Remote Sensing of Environment, vol. 2, pp. 1375–1381 (1972)

    Google Scholar 

  20. Rondeaux, G., Steven, M., Baret, F.: Optimization of soil-adjusted vegetation indices. Remote. Sens. Environ. 55(2), 95–107 (1996)

    Article  Google Scholar 

  21. Haboudane, D., Miller, J.R., Tremblay, N., et al.: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81(2/3), 416–426 (2002)

    Article  Google Scholar 

  22. Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81(2–3), 337–354 (2002)

    Article  Google Scholar 

  23. Gitelson, A., Merzlyak, M.N.: Spectral reflectance changes associated with autumn senescence of aesculus Hippocastanum L. and Acer Platanoides L. leaves. spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143(3), 286–292 (1994)

    Article  Google Scholar 

  24. Vogelmann, J.E., Rock, B.N., Moss, D.M.: Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 14(8), 1563–1575 (1993)

    Article  Google Scholar 

  25. Penuelas, J., Baret, F., Filella, I.: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31(2), 221–230 (1995)

    Google Scholar 

  26. Gamon, J.A., Penuelas, J., Field, C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficienc. Remote Sens. Environ. 41(1), 35–44 (1992)

    Article  Google Scholar 

  27. Haboudane, D., Miller, J.R., Pattey, E., et al.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004)

    Article  Google Scholar 

  28. Qi, J., Chehbouni, A., Huete, A.R., et al.: A modified soil adjusted vegetation index. Remote Sens. Environ. 48(2), 119–126 (1994)

    Article  Google Scholar 

  29. Chen, J.: Evaluation of vegetation indices and modified simple ratio for boreal applications. Can. J. Remote. Sens. 22, 229–242 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, H., Yang, F., Yang, G., Pei, H. (2019). Hyperspectral Estimation of Leaf Area Index of Winter Wheat Based on Akaike’s Information Criterion. In: Li, D. (eds) Computer and Computing Technologies in Agriculture X. CCTA 2016. IFIP Advances in Information and Communication Technology, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-030-06155-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06155-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06154-8

  • Online ISBN: 978-3-030-06155-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics