Abstract
We present a new model for hybrid planarity that relaxes existing hybrid representations. A graph \(G = (V,E)\) is (k, p)-planar if V can be partitioned into clusters of size at most k such that G admits a drawing where: (i) each cluster is associated with a closed, bounded planar region, called a cluster region; (ii) cluster regions are pairwise disjoint, (iii) each vertex \(v \in V\) is identified with at most p distinct points, called ports, on the boundary of its cluster region; (iv) each inter-cluster edge \((u,v) \in E\) is identified with a Jordan arc connecting a port of u to a port of v; (v) inter-cluster edges do not cross or intersect cluster regions except at their endpoints. We first tightly bound the number of edges in a (k, p)-planar graph with \(p<k\). We then prove that (4, 1)-planarity testing and (2, 2)-planarity testing are NP-complete problems. Finally, we prove that neither the class of (2, 2)-planar graphs nor the class of 1-planar graphs contains the other, indicating that the (k, p)-planar graphs are a large and novel class.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017). https://doi.org/10.7155/jgaa.00437
Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011). https://doi.org/10.1109/TVCG.2010.265
de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012). http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016). https://doi.org/10.1016/j.tcs.2016.04.026
Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix representations of clustered graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 107–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_9
Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A.: (k, p)-planarity: A relaxation of hybrid planarity. CoRR abs/1806.11413 (2018)
Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: NodeTrix planarity testing with small clusters. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 479–491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_37
Eades, P., de Mendonça N, C.F.X.: Vertex splitting and tension-free layout. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 202–211. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021804
Eppstein, D., et al.: On the planar split thickness of graphs. Algorithmica 80(3), 977–994 (2018). https://doi.org/10.1007/s00453-017-0328-y
Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). https://doi.org/10.1109/TVCG.2007.70582
Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.2017.06.002
Kowalik, Ł.: Approximation scheme for lowest outdegree orientation and graph density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566. Springer, Heidelberg (2006). https://doi.org/10.1007/11940128_56
Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922
Zhang, X., Liu, G.: The structure of plane graphs with independent crossings and its applications to coloring problems. Cent. Eur. J. Math. 11(2), 308–321 (2013). https://doi.org/10.2478/s11533-012-0094-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A. (2019). (k, p)-Planarity: A Relaxation of Hybrid Planarity. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-10564-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10563-1
Online ISBN: 978-3-030-10564-8
eBook Packages: Computer ScienceComputer Science (R0)