Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Graph Explorations with Mobile Agents

  • Chapter
  • First Online:
Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

  • 1501 Accesses

Abstract

The basic primitive for a mobile agent is the ability to visit all the nodes of the graph in a systematic manner. This chapter considers the exploration of unknown graphs in full detail, for the specific mobile agent model considered in this book. The graph is considered to be finite, undirected and connected. Other than this fact, no prior knowledge of the graph is assumed. Several exploration techniques are introduced and explained for either a single agent, or multiple agents, exploring either labelled or unlabelled graphs. We focus on the efficiency of exploration and consider three different complexity measures, the time taken, the amount of memory used by the agents and the storage needed at each node of the graph. For exploration by multiple agents, we consider collaborative exploration by a team of colocated agents as well as distributed exploration by agents scattered in a graph. The concluding section presents some brief ideas and references on more advanced topics on graph exploration that are not covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that since this is not a proper port labelling, the algorithm should have a default action of traversing port number 0 whenever there is no edge with the required port number.

References

  1. Awerbuch, B., Betke, M., Singh, M.: Piecemeal graph learning by a mobile robot. Inf. Comput. 152, 155–172 (1999)

    Article  Google Scholar 

  2. Bampas, E., Chalopin, J., Das, S., Hackfeld, J., Karousatou, C.: Maximal exploration of trees with energy-constrained agents. CoRR, abs/1802.06636 (2018)

    Google Scholar 

  3. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory Comput. Syst. 40(2), 143–162 (2007)

    Article  MathSciNet  Google Scholar 

  4. Becha, H., Flocchini, P.: Optimal construction of sense of direction in a torus by a mobile agent. Int. J. Found. Comput. Sci. 18(3), 529–546 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proceedings of the 30th ACM Symposium on Theory of Computing (STOC 1998), pp. 269–287 (1998)

    Google Scholar 

  6. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: 19th Symposium on Foundations of Computer Science (FOCS 1978), pp. 132–142 (1978)

    Google Scholar 

  7. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Robot. 27(4), 707–717 (2011)

    Article  Google Scholar 

  8. Budach, L.: Automata and labyrinths. Math. Nachrichten 86, 195–282 (1978)

    Article  MathSciNet  Google Scholar 

  9. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph: applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_10

    Chapter  Google Scholar 

  10. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Proceedings of 21st International Symposium on Distributed Computing (DISC), pp. 108–122 (2007)

    Google Scholar 

  11. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008)

    Article  MathSciNet  Google Scholar 

  12. Czyzowicz, J., Dereniowski, D., Gasieniec, L., Klasing, R., Kosowski, A., Pajak, D.: Collision-free network exploration. J. Comput. Syst. Sci. 86, 70–81 (2017)

    Article  MathSciNet  Google Scholar 

  13. Czyzowicz, J., et al.: More efficient periodic traversal in anonymous undirected graphs. Theor. Comput. Sci. 444, 60–76 (2012)

    Article  MathSciNet  Google Scholar 

  14. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)

    Article  Google Scholar 

  15. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by energy-constrained mobile robots. Theory Comput. Syst. 62(5), 1223–1240 (2018)

    Article  MathSciNet  Google Scholar 

  16. Das, S., Dereniowski, D., Uznanski, P.: Energy constrained depth first search. CoRR, abs/1709.10146 (2017)

    Google Scholar 

  17. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)

    Article  MathSciNet  Google Scholar 

  18. Das, S., Flocchini, P., Nayak, A., Santoro, N.: Effective elections for anonymous mobile agents. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 732–743. Springer, Heidelberg (2006). https://doi.org/10.1007/11940128_73

    Chapter  Google Scholar 

  19. Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92221-6_29

    Chapter  Google Scholar 

  20. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)

    Article  MathSciNet  Google Scholar 

  21. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  Google Scholar 

  22. Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  23. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004)

    Article  MathSciNet  Google Scholar 

  24. Disser, Y., Hackfeld, J., Klimm, M.: Undirected graph exploration with \((\log \log n)\) pebbles. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 25–39 (2016)

    Google Scholar 

  25. Dobrev, S., Flocchini, P., Kralovic, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black hole search in common interconnection networks. Networks 47(2), 61–71 (2006)

    Article  MathSciNet  Google Scholar 

  26. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 807–814 (2001)

    Google Scholar 

  27. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_5

    Chapter  Google Scholar 

  28. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks 52(3), 167–178 (2008)

    Article  MathSciNet  Google Scholar 

  29. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  Google Scholar 

  30. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

    Article  MathSciNet  Google Scholar 

  31. Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012)

    Article  MathSciNet  Google Scholar 

  32. Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph exploration. Inf. Process. Lett. 127, 17–20 (2017)

    Article  MathSciNet  Google Scholar 

  33. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 27–36 (2012)

    Google Scholar 

  34. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)

    Article  MathSciNet  Google Scholar 

  35. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)

    Article  MathSciNet  Google Scholar 

  36. Rollik, H.A.: Automaten in planaren graphen. Acta Informatica 13(3), 287–298 (1980)

    Article  MathSciNet  Google Scholar 

  37. Shannon, C.E.: Presentation of a maze-solving machine. In: 8th Conference of the Josiah Macy Jr. Found. (Cybernetics), pp. 173–180 (1951)

    Google Scholar 

  38. Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  Google Scholar 

  39. Yamashita, M., Kameda, T.: Computing on anonymous networks: part i-characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

    Article  Google Scholar 

  40. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. (2019). Graph Explorations with Mobile Agents. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics