Abstract
A polyomino is a set of edge-connected squares on the square lattice. We investigate the combinatorial and geometric properties of minimal-perimeter polyominoes. We explore the behavior of minimal-perimeter polyominoes when they are “inflated,” i.e., expanded by all empty cells neighboring them, and show that inflating all minimal-perimeter polyominoes of a given area create the set of all minimal-perimeter polyominoes of some larger area. We characterize the roots of the infinite chains of sets of minimal-perimeter polyominoes which are created by inflating polyominoes of another set of minimal-perimeter polyominoes, and show that inflating any polyomino for a sufficient amount of times results in a minimal-perimeter polyomino. In addition, we devise two efficient algorithms for counting the number of minimal-perimeter polyominoes of a given area, compare the algorithms and analyze their running times, and provide the counts of polyominoes which they produce.
Work on this paper by both authors has been supported in part by ISF Grant 575/15 and by BSF (joint with NSF) Grant 2017684.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altshuler, Y., Yanovsky, V., Vainsencher, D., Wagner, I.A., Bruckstein, A.M.: On minimal perimeter polyminoes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 17–28. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_2
Asinowski, A., Barequet, G., Zheng, Y.: Enumerating polyominoes with fixed perimeter defect. In: Proceedings of 9th European Conference on Combinatorics, Graph Theory, and Applications, vol. 61, pp. 61–67. Elsevier, Vienna, August 2017
Barequet, G., Ben-Shachar, G.: Properties of minimal-perimeter polyominoes. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_11
Barequet, G., Rote, G., Shalah, M.: \(\lambda > 4\): an improved lower bound on the growth constant of polyominoes. Commun. ACM 59(7), 88–95 (2016)
Broadbent, S., Hammersley, J.: Percolation processes: I. Crystals and Mazes. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 53, pp. 629–641. Cambridge University Press, Cambridge (1957)
Fülep, G., Sieben, N.: Polyiamonds and polyhexes with minimum site-perimeter and achievement games. Electron. J. Comb. 17(1), 65 (2010)
Golomb, S.: Checker boards and polyominoes. Am. Math. Mon. 61(10), 675–682 (1954)
Jensen, I.: Counting polyominoes: a parallel implementation for cluster computing. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659, pp. 203–212. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44863-2_21
Klarner, D.: Cell growth problems. Canad. J. Math. 19, 851–863 (1967)
Klarner, D., Rivest, R.: A procedure for improving the upper bound for the number of n-ominoes. Canad. J. Math. 25(3), 585–602 (1973)
Madras, N.: A pattern theorem for lattice clusters. Ann. Combin. 3(2), 357–384 (1999)
Pergola, E., Pinzani, R., Rinaldi, S., Sulanke, R.: A bijective approach to the area of generalized Motzkin paths. Adv. Appl. Math. 28(3–4), 580–591 (2002)
Redelmeier, D.H.: Counting polyominoes: yet another attack. Discret. Math. 36(2), 191–203 (1981)
Sieben, N.: Polyominoes with minimum site-perimeter and full set achievement games. Eur. J. Comb. 29(1), 108–117 (2008)
Sulanke, R.A.: Moments of generalized Motzkin paths. J. Integer Seq. 3(001), 1 (2000)
Sulanke, R.A.: Bijective recurrences for Motzkin paths. Adv. Appl. Math. 27(2–3), 627–640 (2001)
Wang, D.L., Wang, P.: Discrete isoperimetric problems. SIAM J. Appl. Math. 32(4), 860–870 (1977)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Barequet, G., Ben-Shachar, G. (2019). Minimal-Perimeter Polyominoes: Chains, Roots, and Algorithms. In: Pal, S., Vijayakumar, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2019. Lecture Notes in Computer Science(), vol 11394. Springer, Cham. https://doi.org/10.1007/978-3-030-11509-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-11509-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11508-1
Online ISBN: 978-3-030-11509-8
eBook Packages: Computer ScienceComputer Science (R0)