Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Maintaining the Visibility Graph of a Dynamic Simple Polygon

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11394))

Included in the following conference series:

Abstract

We devise a fully-dynamic algorithm for maintaining the visibility graph of a given simple polygon P amid vertex insertions and deletions to the simple polygon. Our algorithm takes \(O(k(\lg {n'})^2)\) worst-case time to update the visibility graph when a vertex is inserted to the current simple polygon \(P'\), or when a vertex is deleted from \(P'\). Here, k is the number of combinatorial changes needed to the visibility graph due to the insertion (resp. deletion) of a vertex v to \(P'\), and \(n'\) is the number of vertices of \(P'\). This algorithm preprocesses the initial simple polygon P to build few data structures, including the visibility graph of P. Further, as part of efficiently updating the visibility graph, a fully-dynamic algorithm is designed to compute the vertices of the current simple polygon that are visible from a query point.

R. Inkulu—This research is supported in part by NBHM grant 248(17)2014-R&D-II/1049.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aronov, B., Guibas, L.J., Teichmann, M., Zhang, L.: Visibility queries and maintenance in simple polygons. Discret. Comput. Geom. 27(4), 461–483 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asano, T., Asano, T., Guibas, L.J., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1(1), 49–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Comput. Geom. 23(3), 313–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazelle, B.: Triangulating a simple polygon in linear time. Discret. Comput. Geom. 6, 485–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, D.Z., Wang, H.: Visibility and ray shooting queries in polygonal domains. Comput. Geom. 48(2), 31–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, D.Z., Wang, H.: Weak visibility queries of line segments in simple polygons. Comput. Geom. 48(6), 443–452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, L.S., Benedikt, M.L.: Computational models of space: Isovists and Isovist fields. Comput. Graph. Image Process. 11(1), 49–72 (1979)

    Article  Google Scholar 

  9. ElGindy, H.A., Avis, D.: A linear algorithm for computing the visibility polygon from a point. J. Algorithms 2(2), 186–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh, S.K.: Computing the visibility polygon from a convex set and related problems. J. Algorithms 12(1), 75–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  12. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20(5), 888–910 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms 23(1), 51–73 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guibas, L.J., Motwani, R., Raghavan, P.: The robot localization problem. SIAM J. Comput. 26(4), 1120–1138 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hershberger. J.: Finding the visibility graph of a simple polygon in time proportional to its size. In: Proceedings of the Third Annual Symposium on Computational Geometry, pp. 11–20 (1987)

    Google Scholar 

  17. Hershberger, J.: An optimal visibility graph algorithm for triangulated simple polygons. Algorithmica 4, 141–155 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Inkulu, R., Kapoor, S.: Visibility queries in a polygonal region. Comput. Geom. 42(9), 852–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Inkulu, R., Thakur, N.: Incremental algorithms to update visibility polygons. In: Proceedings of Conference on Algorithms and Discrete Applied Mathematics, pp. 205–218 (2017)

    Chapter  MATH  Google Scholar 

  20. Inkulu, R., Sowmya, K.: Dynamic algorithms for visibility polygons. CoRR, abs/1704.08219 (2017)

    Google Scholar 

  21. Joe, B., Simpson, R.: Corrections to Lee’s visibility polygon algorithm. BIT Numer. Math. 27(4), 458–473 (1987)

    Article  MATH  Google Scholar 

  22. Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles. In: Proceedings of Symposium on Computational Geometry, pp. 172–182 (1988)

    Google Scholar 

  23. Kapoor, S., Maheshwari, S.N.: Efficiently constructing the visibility graph of a simple polygon with obstacles. SIAM J. Comput. 30(3), 847–871 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, D.T.: Proximity and reachability in the plane. Ph.D. thesis, University of Illinois at Urbana-Champaign (1978). Ph.D. thesis and Technical report ACT-12

    Google Scholar 

  25. Lee, D.T.: Visibility of a simple polygon. Comput. Vis. Graph. Image Process. 22(2), 207–221 (1983)

    Article  MATH  Google Scholar 

  26. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 164–171 (1988)

    Google Scholar 

  27. Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudotriangulations. Discret. Comput. Geom. 16(4), 419–453 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15(1), 193–215 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vegter, G.: The visibility diagram: a data structure for visibility problems and motion planning. In: Proceedings of Scandinavian Workshop on Algorithm Theory, pp. 97–110 (1990)

    Chapter  Google Scholar 

  30. Welzl, E.: Constructing the visibility graph for \(n\)-line segments in \(O(n^2)\) time. Inf. Process. Lett. 20(4), 167–171 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Zarei, A., Ghodsi, M.: Efficient computation of query point visibility in polygons with holes. In: Proceedings of the Symposium on Computational Geometry, pp. 314–320 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Inkulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choudhury, T., Inkulu, R. (2019). Maintaining the Visibility Graph of a Dynamic Simple Polygon. In: Pal, S., Vijayakumar, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2019. Lecture Notes in Computer Science(), vol 11394. Springer, Cham. https://doi.org/10.1007/978-3-030-11509-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11509-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11508-1

  • Online ISBN: 978-3-030-11509-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics