Abstract
We consider a mathematical model for simulation of the unsaturated flow problems in heterogeneous porous medium that describes by the Richards equation. To resolve all heterogeneity, we construct fine grid and construct finite element approximation. For dimension reduction of the discrete system, we construct multiscale solver for coarse grid solution using Generalized Multiscale Finite Element Method (GMsFEM). We generate multiscale basis functions by solution of the local spectral problems. We present numerical result and compare relative error for different number of the multiscale basis functions for 2D and 3D model problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Celia, M.A., Bouloutas, E.T., Zarba, R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990)
Celia, M.A., Binning, P.: A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour. Res. 28(10), 2819–2828 (1992)
Ginting, V.E.: Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method. Ph.D. thesis, Texas A and M University (2004)
Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G.: A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. J. 41(2), 285–294 (1977)
Hou, T., Efendiev, Y.: Multiscale Finite Element Methods: Theory and Applications. STAMS, vol. 4, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09496-0
Akkutlu, I.Y., Efendiev, Y., Vasilyeva, M., Wang, Y.: Multiscale model reduction for shale gas transport in poroelastic fractured media. J. Comput. Phys. 353, 356–376 (2018)
Chung, E.T., Leung, W.T., Vasilyeva, M., Wang, Y.: Multiscale model reduction for transport and flow problems in perforated domains. J. Comput. Appl. Math. 330, 519–535 (2018)
Chung, E.T., Efendiev, Y., Lee, C.S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)
Chung, E.T., Efendiev, Y., Li, G., Vasilyeva, M.: Generalized multiscale finite element methods for problems in perforated heterogeneous domains. Appl. Anal. 95(10), 2254–2279 (2016)
Efendiev, Y., Hou, T.Y., Ginting, V.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2(4), 553–589 (2004)
Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)
Software GMSH. http://geuz.org/gmsh/
Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. LNCSE, vol. 84. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-23099-8
Acknowledgments
Work is supported by the mega-grant of the Russian Federation Government (N 14.Y26.31.0013 and RFBR N 17-01-00732).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Spiridonov, D., Vasilyeva, M. (2019). Generalized Multiscale Finite Element Method for Unsaturated Filtration Problem in Heterogeneous Medium. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)