Abstract
Deep convolutional neural networks (CNNs) have achieved state-of-the-art performances for multi-class segmentation of medical images. However, a common problem when dealing with large, high resolution 3D data is that the volumes input into the deep CNNs has to be either cropped or downsampled due to limited memory capacity of computing devices. These operations can lead to loss of resolution and class imbalance in the input data batches, thus downgrade the performances of segmentation algorithms. Inspired by the architecture of image super-resolution CNN (SRCNN), we propose a two-stage modified U-Net framework that simultaneously learns to detect a ROI within the full volume and to classify voxels without losing the original resolution. Experiments on a variety of multi-modal 3D cardiac images have demonstrated that this framework shows better segmentation performances than state-of-the-art Deep CNNs with trained with the same similarity metrics.
This work is funded by BHF Centre of Cardiovascular Science and MICCAI 2017 Multi-Modality Whole Heart Segmentation (MM-WHS) challeng.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pace, D.F., Dalca, A.V., Geva, T., Powell, A.J., Moghari, M.H., Golland, P.: Interactive whole-heart segmentation in congenital heart disease. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 80–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_10
Arrieta, C., Uribe, S., Sing-Long, C., Hurtado, D., Andia, M., Irarrazaval, P., Tejos, C.: Simultaneous left and right ventricle segmentation using topology preserving level sets. Biomed. Sig. Process. Control 33, 88–95 (2017)
Gonzalez-Mora, J., De la Torre, F., Murthi, R., Guil, N., Zapata, E.L.: Bilinear active appearance models. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)
Marsland, S., Twining, C.J., Taylor, C.J.: Groupwise non-rigid registration using polyharmonic clamped-plate splines. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 771–779. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39903-2_94
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 95–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_9
Moeskops, P., et al.: Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_55
Mortazi, A., Burt, J., Bagci, U.: Multi-planar deep segmentation networks for cardiac substructures from MRI and CT. arXiv preprint arXiv:1708.00983 (2017)
Roth, H.R., et al.: Hierarchical 3D fully convolutional networks for multi-organ segmentation. arXiv preprint arXiv:1704.06382 (2017)
Yu, L.: Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 287–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_33
Payer, C., Štern, D., Bischof, H., Urschler, M.: Multi-label whole heart segmentation using CNNs and anatomical label configurations. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 190–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_20
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)
Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)
Berger, L., Hyde, E., Cardoso, J., Ourselin, S.: An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation. arXiv preprint arXiv:1709.02764 (2017)
Girshick, R.: Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, C., MacGillivray, T., Macnaught, G., Yang, G., Newby, D. (2019). A Two-Stage U-Net Model for 3D Multi-class Segmentation on Full-Resolution Cardiac Data. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-12029-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12028-3
Online ISBN: 978-3-030-12029-0
eBook Packages: Computer ScienceComputer Science (R0)