Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-estimator Full Left Ventricle Quantification Through Ensemble Learning

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges (STACOM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

Abstract

Cardiovascular disease accounts for 1 in every 4 deaths in United States. Accurate estimation of structural and functional cardiac parameters is crucial for both diagnosis and disease management. In this work, we develop an ensemble learning framework for more accurate and robust left ventricle (LV) quantification. The framework combines two 1st-level modules: direct estimation module and a segmentation module. The direct estimation module utilizes Convolutional Neural Network (CNN) to achieve end-to-end quantification. The CNN is trained by taking 2D cardiac images as input and cardiac parameters as output. The segmentation module utilizes a U-Net architecture for obtaining pixel-wise prediction of the epicardium and endocardium of LV from the background. The binary U-Net output is then analyzed by a separate CNN for estimating the cardiac parameters. We then employ linear regression between the 1st-level predictor and ground truth to learn a 2nd-level predictor that ensembles the results from 1st-level modules for the final estimation. Preliminary results by testing the proposed framework on the LVQuan18 dataset show superior performance of the ensemble learning model over the two base modules.

J. Liu and X. Li—Joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hundley, W.G., et al.: Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations. J. Cardiovasc. Magn. Reson. 11, 5 (2009)

    Article  Google Scholar 

  2. Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29, 155–195 (2016)

    Article  Google Scholar 

  3. Ben Ayed, I., Chen, H.-M., Punithakumar, K., Ross, I., Li, S.: Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure. Med. Image Anal. 16, 87–100 (2012)

    Article  Google Scholar 

  4. Petitjean, C., Dacher, J.-N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15, 169–184 (2011)

    Article  Google Scholar 

  5. Afshin, M., et al.: Regional assessment of cardiac left ventricular myocardial function via MRI statistical features. IEEE Trans. Med. Imaging 33, 481–494 (2014)

    Article  Google Scholar 

  6. Wang, Z., Salah, M.B., Gu, B., Islam, A., Goela, A., Li, S.: Direct estimation of cardiac biventricular volumes with an adapted Bayesian formulation. IEEE Trans. Biomed. Eng. 61, 1251–1260 (2014)

    Article  Google Scholar 

  7. Xue, W., Lum, A., Mercado, A., Landis, M., Warrington, J., Li, S.: Full quantification of left ventricle via deep multitask learning network respecting intra- and inter-task relatedness. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 276–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_32

    Chapter  Google Scholar 

  8. Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE Trans. Med. Imaging 36, 2057–2067 (2017)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Li, X., Ren, H., Li, Q. (2019). Multi-estimator Full Left Ventricle Quantification Through Ensemble Learning. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics