Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Process-Monitoring-for-Quality—A Model Selection Criterion for Genetic Programming

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

Abstract

Process Monitoring for Quality is a manufacturing quality philosophy aimed at defect detection through binary classification that is founded on big data and big models. Genetic Programming (GP) algorithms have been successfully applied by following the big models learning paradigm for rare quality event detection (classification). Since it is a bias-free technique unmarred by human preconceptions, it can potentially generate better solutions (models) compared with the best human efforts. However, since GP uses random search methods based on Darwinian philosophy of “survival of the fittest”, hundreds, or even thousands of models need to be created to find a good solution. In this context, model selection becomes a critical step in the process of finding the final model to be deployed at the plant. A three-objective optimization model selection criterion (\(3D-GP\)) is introduced for analyzing highly/ultra unbalanced data structures. It uses three competing attributes – prediction, separability, complexity – to project candidate models into a three-dimensional space to select the final model that solves the posed tradeoff between them the best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abell, J.A., Chakraborty, D., Escobar, C.A., Im, K.H., Wegner, D.M., Wincek, M.A.: Big data driven manufacturing—process-monitoring-for-quality philosophy. ASME J. Manuf. Sci. Eng. Data Sci.-Enhanced Manuf. 139(10) (2017)

    Article  Google Scholar 

  2. Abell, J.A., Spicer, J.P., Wincek, M.A., Wang, H., Chakraborty, D.: Binary Classification of Items of Interest in a Repeatable Process. US Patent (US8757469B2), June 2014. www.google.com/patents/US20130105556

  3. Angeline, P.J.: Subtree crossover: building block engine or macromutation. Genet. Program. 97, 9–17 (1997)

    Google Scholar 

  4. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction, vol. 1. Morgan Kaufmann, San Francisco (1998)

    Book  Google Scholar 

  5. Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming: reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 536–543 (2001)

    Google Scholar 

  6. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-31030-5

    Book  MATH  Google Scholar 

  7. Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization: Interactive and Evolutionary Approaches. LNCS, vol. 5252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3

    Book  MATH  Google Scholar 

  8. Chaudhari, N.S., Tiwari, A., Purohit, A.: Genetic programming for classification. Int. J. Comput. Electron. Eng. IJCEE 1, 69–76 (2009)

    Google Scholar 

  9. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  10. Devore, J.: Probability and Statistics for Engineering and the Sciences. Cengage Learning, Boston (2015)

    Google Scholar 

  11. Deza, M.M., Deza, E.: Encyclopedia of distances. In: Deza, M.M., Deza, E. (eds.) Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2_1

    Chapter  MATH  Google Scholar 

  12. Escobar, C.A., Abell, J.A., Hernández-de Menéndez, M., Morales-Menendez, R.: Process-monitoring-for-quality—big models. Procedia Manuf. 26, 1167–1179 (2018)

    Article  Google Scholar 

  13. Escobar, C.A., Morales-Menendez, R.: Process-monitoring-for-quality—a model selection criterion. Manuf. Lett. 15 Part A, 55–58 (2018)

    Article  Google Scholar 

  14. Escobar, C.A., Wincek, M.A., Chakraborty, D., Morales-Menendez, R.: Process-monitoring-for-quality—applications. Manuf. Lett. 16, 14–17 (2018)

    Article  Google Scholar 

  15. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  16. Feng, W., Huang, W., Ren, J.: Class imbalance ensemble learning based on the margin theory. Appl. Sci. 8(5), 815 (2018)

    Article  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms. Pearson Education India (2006)

    Google Scholar 

  18. Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Subprograms. MIT Press, Cambridge (1992)

    Google Scholar 

  19. Le, N., Xuan, H.N., Brabazon, A., Thi, T.P.: Complexity measures in genetic programming learning: a brief review. In: 2016 IEEE Congress on Evolutionary Computation, pp. 2409–2416 (2016)

    Google Scholar 

  20. Luke, S.: Issues in scaling genetic programming: breeding strategies, tree generation, and code bloat. Ph.D. thesis, Research Directed by Department of Computer Science, University of Maryland, College Park (2000)

    Google Scholar 

  21. Mohamad, I.B., Usman, D.: Standardization and its effects on K-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 6(17), 3299–3303 (2013)

    Article  Google Scholar 

  22. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  23. Ni, J., Rockett, P.: Tikhonov regularization as a complexity measure in multiobjective genetic programming. IEEE Trans. Evol. Comput. 19(2), 157–166 (2015)

    Article  Google Scholar 

  24. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu.com, Morrisville (2008)

    Google Scholar 

  25. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S., et al.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)

    Article  MathSciNet  Google Scholar 

  26. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  27. Shao, C., et al.: Feature selection for manufacturing process monitoring using cross-validation. J. Manuf. Syst. 10 (2013)

    Google Scholar 

  28. Silva, S., Almeida, J.: GPLAB-A genetic programming toolbox for MATLAB. In: Proceedings of the Nordic MATLAB Conference, pp. 273–278. Citeseer (2003)

    Google Scholar 

  29. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Escobar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobar, C.A., Wegner, D.M., Gaur, A., Morales-Menendez, R. (2019). Process-Monitoring-for-Quality—A Model Selection Criterion for Genetic Programming. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics