Abstract
Process Monitoring for Quality is a manufacturing quality philosophy aimed at defect detection through binary classification that is founded on big data and big models. Genetic Programming (GP) algorithms have been successfully applied by following the big models learning paradigm for rare quality event detection (classification). Since it is a bias-free technique unmarred by human preconceptions, it can potentially generate better solutions (models) compared with the best human efforts. However, since GP uses random search methods based on Darwinian philosophy of “survival of the fittest”, hundreds, or even thousands of models need to be created to find a good solution. In this context, model selection becomes a critical step in the process of finding the final model to be deployed at the plant. A three-objective optimization model selection criterion (\(3D-GP\)) is introduced for analyzing highly/ultra unbalanced data structures. It uses three competing attributes – prediction, separability, complexity – to project candidate models into a three-dimensional space to select the final model that solves the posed tradeoff between them the best.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abell, J.A., Chakraborty, D., Escobar, C.A., Im, K.H., Wegner, D.M., Wincek, M.A.: Big data driven manufacturing—process-monitoring-for-quality philosophy. ASME J. Manuf. Sci. Eng. Data Sci.-Enhanced Manuf. 139(10) (2017)
Abell, J.A., Spicer, J.P., Wincek, M.A., Wang, H., Chakraborty, D.: Binary Classification of Items of Interest in a Repeatable Process. US Patent (US8757469B2), June 2014. www.google.com/patents/US20130105556
Angeline, P.J.: Subtree crossover: building block engine or macromutation. Genet. Program. 97, 9–17 (1997)
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction, vol. 1. Morgan Kaufmann, San Francisco (1998)
Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming: reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 536–543 (2001)
Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-31030-5
Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization: Interactive and Evolutionary Approaches. LNCS, vol. 5252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3
Chaudhari, N.S., Tiwari, A., Purohit, A.: Genetic programming for classification. Int. J. Comput. Electron. Eng. IJCEE 1, 69–76 (2009)
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken (2001)
Devore, J.: Probability and Statistics for Engineering and the Sciences. Cengage Learning, Boston (2015)
Deza, M.M., Deza, E.: Encyclopedia of distances. In: Deza, M.M., Deza, E. (eds.) Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2_1
Escobar, C.A., Abell, J.A., Hernández-de Menéndez, M., Morales-Menendez, R.: Process-monitoring-for-quality—big models. Procedia Manuf. 26, 1167–1179 (2018)
Escobar, C.A., Morales-Menendez, R.: Process-monitoring-for-quality—a model selection criterion. Manuf. Lett. 15 Part A, 55–58 (2018)
Escobar, C.A., Wincek, M.A., Chakraborty, D., Morales-Menendez, R.: Process-monitoring-for-quality—applications. Manuf. Lett. 16, 14–17 (2018)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
Feng, W., Huang, W., Ren, J.: Class imbalance ensemble learning based on the margin theory. Appl. Sci. 8(5), 815 (2018)
Goldberg, D.E.: Genetic Algorithms. Pearson Education India (2006)
Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Subprograms. MIT Press, Cambridge (1992)
Le, N., Xuan, H.N., Brabazon, A., Thi, T.P.: Complexity measures in genetic programming learning: a brief review. In: 2016 IEEE Congress on Evolutionary Computation, pp. 2409–2416 (2016)
Luke, S.: Issues in scaling genetic programming: breeding strategies, tree generation, and code bloat. Ph.D. thesis, Research Directed by Department of Computer Science, University of Maryland, College Park (2000)
Mohamad, I.B., Usman, D.: Standardization and its effects on K-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 6(17), 3299–3303 (2013)
Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
Ni, J., Rockett, P.: Tikhonov regularization as a complexity measure in multiobjective genetic programming. IEEE Trans. Evol. Comput. 19(2), 157–166 (2015)
Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu.com, Morrisville (2008)
Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S., et al.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)
Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)
Shao, C., et al.: Feature selection for manufacturing process monitoring using cross-validation. J. Manuf. Syst. 10 (2013)
Silva, S., Almeida, J.: GPLAB-A genetic programming toolbox for MATLAB. In: Proceedings of the Nordic MATLAB Conference, pp. 273–278. Citeseer (2003)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-3264-1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Escobar, C.A., Wegner, D.M., Gaur, A., Morales-Menendez, R. (2019). Process-Monitoring-for-Quality—A Model Selection Criterion for Genetic Programming. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-12598-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12597-4
Online ISBN: 978-3-030-12598-1
eBook Packages: Computer ScienceComputer Science (R0)